OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 6 — Mar. 14, 2011
  • pp: 5339–5349

FSBS resonances observed in a standard highly nonlinear fiber

Jing Wang, Yunhui Zhu, Rui Zhang, and Daniel J. Gauthier  »View Author Affiliations

Optics Express, Vol. 19, Issue 6, pp. 5339-5349 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1474 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Forward stimulated Brillouin scattering (FSBS) is observed in a standard 2-km-long highly nonlinear fiber. The frequency of FSBS arising from multiple radially guided acoustic resonances is observed up to gigahertz frequencies. The tight confinement of the light and acoustic field enhances the interaction and results in a large gain coefficient of 34.7 W−1 at a frequency of 933.8 MHz. We also find that the profile on the anti-Stokes side of the pump beam have lineshapes that are asymmetric, which we show is due to the interference between FSBS and the optical Kerr effect. The measured FSBS resonance linewidths are found to increase linearly with the acoustic frequency. Based on this scaling, we conclude that dominant contribution to the linewidth is from surface damping due to the fiber jacket and structural nonuniformities along the fiber.

© 2011 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.3270) Nonlinear optics : Kerr effect
(290.5900) Scattering : Scattering, stimulated Brillouin

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: November 29, 2010
Revised Manuscript: February 16, 2011
Manuscript Accepted: February 25, 2011
Published: March 7, 2011

Jing Wang, Yunhui Zhu, Rui Zhang, and Daniel J. Gauthier, "FSBS resonances observed in a standard highly nonlinear fiber," Opt. Express 19, 5339-5349 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007). [CrossRef] [PubMed]
  2. A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44(5), 3205–3209 (1991). [CrossRef] [PubMed]
  3. Y. Zhu, E. Cabrera-Granado, O. G. Calderon, S. Melle, Y. Okawachi, A. L. Gaeta, and D. J. Gauthier, “Competition between the modulation instability and stimulated Brillouin scattering in a broadband slow light device,” J. Opt. 12(10), 104019 (2010). [CrossRef]
  4. P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14(9), 4141–4150 (2006). [CrossRef] [PubMed]
  5. M. S. Kang, A. Nazarkin, A. Brenn, and P. St. J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5(4), 276–280 (2009). [CrossRef]
  6. M. S. Kang, A. Brenn, and P. St. J. Russell, “All-optical control of gigahertz acoustic resonances by forward stimulated interpolarization scattering in a photonic crystal fiber,” Phys. Rev. Lett. 105(15), 153901 (2010). [CrossRef]
  7. R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B Condens. Matter 31(8), 5244–5252 (1985). [CrossRef] [PubMed]
  8. M. W. Haakestad and J. Skaar, “Slow and fast light in optical fibers using acoustooptic coupling between two co-propagating modes,” Opt. Express 17(1), 346–357 (2009). [CrossRef] [PubMed]
  9. M. S. Kang, A. Brenn, G. S. Wiederhecker, and P. St. J. Russell, “Optical excitation and characterization of gigahertz acoustic resonances in optical fiber tapers,” Appl. Phys. Lett. 93(13), 131110 (2008). [CrossRef]
  10. N. Shibata, A. Nakazono, N. Taguchi, and S. Tanaka, “Forward Brillouin scattering in holey fibers,” IEEE Photon. Technol. Lett. 18(2), 412–414 (2006). [CrossRef]
  11. J. C. Beugnot, T. Sylvestre, H. Maillotte, G. Mélin, and V. Laude, “Guided acoustic wave Brillouin scattering in photonic crystal fibers,” Opt. Lett. 32(1), 17–19 (2007). [CrossRef]
  12. P. St. J. Russell, R. Culverhouse, and F. Farahi, “Experimental observation of forward stimulated Brillouin scattering in dual-mode single core fiber,” Electron. Lett. 26(15), 1195–1196 (1990). [CrossRef]
  13. R. W. Boyd, Nonlinear Optics (Academic Press, San Diego, 2008), Ch. 9.
  14. E. Peral and A. Yariv, “Degradation of modulation and noise characteristics of semiconductor lasers after propagation in optical fiber due to a phase shift induced by stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35(8), 1185–1195 (1999). [CrossRef]
  15. M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997). [CrossRef]
  16. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2007), Ch. 2.
  17. K. Okamoto, Fundamentals of optical waveguides (Academic Press, San Diego, 2006), Ch.3.
  18. S. Le Floch and P. Cambon, “Theoretical evaluation of the Brillouin threshold and the steady-state Brillouin equations in standard single-mode optical fibers,” J. Opt. Soc. Am. A 20(6), 1132–1137 (2003). [CrossRef]
  19. A. J. Poustie, “Bandwidth and mode intensities of guided acoustic-wave Brillouin scattering in optical fibers,” J. Opt. Soc. Am. B 10(4), 691–696 (1993). [CrossRef]
  20. D. Pohl and W. Kaiser, “Time-resolved investigations of stimulated Brillouin scattering in transparent and absorbing media determination of phonon lifetimes,” Phys. Rev. 1(1), 31–43 (1970). [CrossRef]
  21. E. K. Sittig and G. A. Coquin, “Visualization of plane-strain vibration modes of a long cylinder capable of producing sound radiation,” J. Acoust. Soc. Am. 48(5B), 1150–1159 (1970). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited