OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 6 — Mar. 14, 2011
  • pp: 5470–5479

Up-conversion single-photon detector using multi-wavelength sampling techniques

Lijun Ma, Joshua C. Bienfang, Oliver Slattery, and Xiao Tang  »View Author Affiliations

Optics Express, Vol. 19, Issue 6, pp. 5470-5479 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1190 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The maximum achievable data-rate of a quantum communication system can be critically limited by the efficiency and temporal resolution of the system’s single-photon detectors. Frequency up-conversion technology can be used to increase detection efficiency for IR photons. In this paper we describe a scheme to improve the temporal resolution of an up-conversion single-photon detector using multi-wavelength optical-sampling techniques, allowing for increased transmission rates in single-photon communications systems. We experimentally demonstrate our approach with an up-conversion detector using two spectrally and temporally distinct pump pulses, and show that it allows for high-fidelity single-photon detection at twice the rate supported by a conventional single-pump up-conversion detector. We also discuss the limiting factors of this approach and identify important performance-limiting trade offs.

© 2011 OSA

OCIS Codes
(040.5570) Detectors : Quantum detectors
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(230.7370) Optical devices : Waveguides

ToC Category:
Image Processing

Original Manuscript: December 7, 2010
Revised Manuscript: February 23, 2011
Manuscript Accepted: February 25, 2011
Published: March 8, 2011

Lijun Ma, Joshua C. Bienfang, Oliver Slattery, and Xiao Tang, "Up-conversion single-photon detector using multi-wavelength sampling techniques," Opt. Express 19, 5470-5479 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. http://www.idquantique.com
  2. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1(6), 343–348 (2007). [CrossRef]
  3. Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. M. Fejer, and Y. Yamamoto, “Distribution of time-energy entanglement over 100 km fiber using superconducting single-photon detectors,” Opt. Express 16(8), 5776–5781 (2008). [CrossRef] [PubMed]
  4. L. Ma, S. Nam, H. Xu, B. Baek, T. Chang, O. Slattery, A. Mink, and X. Tang, “1310 nm differential phase shift QKD system using superconducting single photon detectors,” N. J. Phys. 11(4), 045020 (2009). [CrossRef]
  5. L. Ma, O. Slattery, and X. Tang, “NIR single photon detectors with up-conversion technology and its applications in quantum communication systems” in the book of “Advances in Lasers and Electro Optics”, INTECH, Chapter 15, page 315–336, (2010).
  6. A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51, 1433–1445 (2004).
  7. M. A. Albota and F. N. C. Wong, “Efficient single-photon counting at 1.55 microm by means of frequency upconversion,” Opt. Lett. 29(13), 1449–1451 (2004). [CrossRef] [PubMed]
  8. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30(13), 1725–1727 (2005). [CrossRef] [PubMed]
  9. E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-key-distribution systems using 1.55-μm up-conversion single-photon detectors,” Phys. Rev. A 72(5), 052311 (2005). [CrossRef]
  10. R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8(3), 32 (2006). [CrossRef]
  11. H. Xu, L. Ma, A. Mink, B. Hershman, and X. Tang, “1310-nm quantum key distribution system with up-conversion pump wavelength at 1550 nm,” Opt. Express 15(12), 7247–7260 (2007). [CrossRef] [PubMed]
  12. H. Xu, L. Ma, O. Slattery, and X. Tang, “Low noise PPLN-based single photon detector,” Proc. SPIE 6780, 67800U, 67800U-8 (2007). [CrossRef]
  13. H. Dong, H. Pan, Y. Li, E. Wu, and H. Zeng, “Efficient single-phtone frequency upconversion at 1.06 μm with ultralow background counts,” Appl. Phys. Lett. 93(7), 071101 (2008). [CrossRef]
  14. L. Ma, O. Slattery, T. Chang, and X. Tang, “Non-degenerated sequential time-bin entanglement generation using periodically poled KTP waveguide,” Opt. Express 17(18), 15799–15807 (2009). [CrossRef] [PubMed]
  15. H. Ishizuki, T. Suhara, M. Fujimura, and H. Nishihara, “wavelength-conversion type picosecond optical switching using a waveguide,” Opt. Quantum Electron. 33(7/10), 953–961 (2001). [CrossRef]
  16. P. A. Andrekson and M. Westlund, “Nonlinear optical fiber based high resolution all-optical waveform sampling,” Laser Photonics Rev. 1(3), 231–248 (2007). [CrossRef]
  17. O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Time-resolved single-photon detection by femtosecond upconversion,” Opt. Lett. 33(19), 2257–2259 (2008). [CrossRef] [PubMed]
  18. J. Huang, C. Langrock, X. P. Xie, and M. M. Fejer, “Monolithic 160 Gbit/s optical time-division multiplexer,” Opt. Lett. 32(16), 2420–2422 (2007). [CrossRef] [PubMed]
  19. A Single Photon Counting Module Datasheet, SPCM-QR Series (PerkinElmer, 2004), pp. 1–10.
  20. I. Rech, G. Luo, M. Ghioni, H. Yang, X. S. Xie, and S. Cova, “Photon-Timing Detector Module for Single-Molecule Spectroscopy With 60-ps Resolution,” IEEE J. Sel. Top. Quantum Electron. 10(4), 788–795 (2004). [CrossRef]
  21. A. Restelli, J. C. Bienfang, A. Mink, and C. Clark, “Quantum key distribution at GHz transmission rates,” Proc. SPIE 7236, 72360L, 72360L-7 (2009). [CrossRef]
  22. L. Ma, O. Slattery, and X. Tang, “Experimental study of high sensitivity infrared spectrometer with waveguide-based up-conversion detector(1),” Opt. Express 17(16), 14395–14404 (2009). [CrossRef] [PubMed]
  23. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992). [CrossRef]
  24. M. P. De Micheli, “χ(2) effects in waveguides,” Quantum Semiclassic. Opt. 9(2), 155–164 (1997). [CrossRef]
  25. J. S. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer, “Influence of domain disorder on parametric noise in quasi-phase-matched quantum frequency converters,” Opt. Lett. 35(16), 2804–2806 (2010). [CrossRef] [PubMed]
  26. K. J. Gordon, V. Fernandez, G. S. Buller, I. Rech, S. D. Cova, and P. D. Townsend, “Quantum key distribution system clocked at 2 GHz,” Opt. Express 13(8), 3015–3020 (2005). [CrossRef] [PubMed]
  27. T. D. Donnelly and C. Grossman, “Ultrafast phenomena: A laboratory experiment for undergraduates,” Am. J. Phys. 66(8), 677 (1998). [CrossRef]
  28. H. Suchowski, B. D. Bruner, A. Arie, and Y. Silberberg, “Broadband nonlinear frequency conversion,” Opt. Photonics News 21(10), 36–41 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited