OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 6 — Mar. 14, 2011
  • pp: 5620–5626

Upconversion ultraviolet random lasing in Nd3+ doped fluoroindate glass powder

Marcos A. S. de Oliveira, Cid B. de Araújo, and Younes Messaddeq  »View Author Affiliations


Optics Express, Vol. 19, Issue 6, pp. 5620-5626 (2011)
http://dx.doi.org/10.1364/OE.19.005620


View Full Text Article

Enhanced HTML    Acrobat PDF (1056 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An upconversion random laser (RL) operating in the ultraviolet is reported for Nd3+ doped fluoroindate glass powder pumped at 575 nm. The RL is obtained by the resonant excitation of the Nd3+ state 2G7/2 followed by energy transfer among two excited ions such that one ion in the pair decays to a lower energy state and the other is promoted to state 4D7/2 from where it decays emitting light at 381 nm. The RL threshold of 30 kW/cm2 was determined by monitoring the photoluminescence intensity as a function of the pump laser intensity. The RL pulses have time duration of 29 ns that is 50 times smaller than the decay time of the upconversion signal when the sample is pumped with intensities below the RL laser threshold.

© 2011 OSA

OCIS Codes
(140.3530) Lasers and laser optics : Lasers, neodymium
(140.3610) Lasers and laser optics : Lasers, ultraviolet
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers
(190.0190) Nonlinear optics : Nonlinear optics
(140.3613) Lasers and laser optics : Lasers, upconversion

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 3, 2011
Revised Manuscript: February 28, 2011
Manuscript Accepted: February 28, 2011
Published: March 10, 2011

Citation
Marcos A. S. de Oliveira, Cid B. de Araújo, and Younes Messaddeq, "Upconversion ultraviolet random lasing in Nd3+ doped fluoroindate glass powder," Opt. Express 19, 5620-5626 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-6-5620


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Cao, “Lasing in random media,” Waves Random Media 13(3), R1–R39 (2003). [CrossRef]
  2. M. A. Noginov, Solid-State Random Lasers (Springer, 2005).
  3. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008). [CrossRef]
  4. D. S. Wiersma and M. A. Noginov, “Nano and random lasers,” J. Opt. 12(2), 020201–024014 (2010). [CrossRef]
  5. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994). [CrossRef]
  6. H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonator forward by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998). [CrossRef]
  7. X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79(5), 053817 (2009). [CrossRef]
  8. A. M. Brito-Silva, A. Galembeck, A. S. L. Gomes, A. J. Jesus-Silva, and C. B. de Araújo, “Random laser action in dye solutions containing Stöber silica nanoparticles,” J. Appl. Phys. 108(3), 033508 (2010). [CrossRef]
  9. B. Li, G. Williams, S. C. Rand, T. Hinklin, and R. M. Laine, “Continuous-wave ultraviolet laser action in strongly scattering Nd-doped alumina,” Opt. Lett. 27(6), 394–396 (2002). [CrossRef]
  10. S. M. Redmond, G. L. Armstrong, H.-Y. Chan, E. Mattson, A. Mock, B. Li, J. R. Potts, M. Cui, S. C. Rand, S. L. Oliveira, J. Marchal, T. Hinklin, and R. M. Laine, “Electrical generation of stationary light in random scattering media,” J. Opt. Soc. Am. B 21(1), 214–222 (2004). [CrossRef]
  11. H. Fujiwara and K. Sasaki, “Observation of upconversion lasing within a thulium-ion-doped glass powder film containing titanium dioxide particles,” Jpn. J. Appl. Phys. 43(No. 10B), L1337–L1339 (2004). [CrossRef]
  12. M. A. R. C. Alencar, A. S. L. Gomes, and C. B. de Araújo, “Directional laserlike emission from a dye-doped polymer containing rutile nanoparticles,” J. Opt. Soc. Am. B 20(3), 564–567 (2003). [CrossRef]
  13. C. J. S. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. L. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007). [CrossRef] [PubMed]
  14. Q. Song, L. Liu, and L. Xu, “Directional random-laser emission from Bragg gratings with irregular perturbation,” Opt. Lett. 34(3), 344–346 (2009). [CrossRef] [PubMed]
  15. M. Gagné and R. Kashyap, “Demonstration of a 3 mW threshold Er-doped random fiber laser based on a unique fiber Bragg grating,” Opt. Express 17(21), 19067–19074 (2009). [CrossRef]
  16. E. Pecoraro, S. García-Revilla, R. A. S. Ferreira, R. Balda, L. D. Carlos, and J. Fernández, “Real time random laser properties of Rhodamine-doped di-ureasil hybrids,” Opt. Express 18(7), 7470–7478 (2010). [CrossRef] [PubMed]
  17. C. B. de Araújo, G. S. Maciel, L. de S. Menezes, N. Rakov, E. L. Falcão-Filho, V. A. Jerez, and Y. Messaddeq, “Frequency upconversion in rare-earth doped fluoroindate glasses,” C. R. Chim. 5(12), 885–898 (2002). [CrossRef]
  18. E. L. Falcão-Filho, C. B. de Araújo, and Y. Messaddeq, “Frequency upconversion involving triads and quartets of íons in a Pr3+ / Nd3+ codoped fluoroindate glass,” J. Appl. Phys. 92(6), 3065–3070 (2002). [CrossRef]
  19. L. de S. Menezes, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Frequency upconversion in Nd3+ doped fluoroindate glass,” J. Non-Cryst. Solids 213–214, 256–260 (1997). [CrossRef]
  20. G. S. Maciel, L. de S. Menezes, C. B. de Araújo, and Y. Messaddeq, “Violet and blue light amplification in Nd3+ doped fluoroindate glasses,” J. Appl. Phys. 85, 6782–6785 (1999). [CrossRef]
  21. M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge University Press, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited