OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 6 — Mar. 14, 2011
  • pp: 5670–5675

Mode structure of coupled L3 photonic crystal cavities

A. R. A. Chalcraft, S. Lam, B. D. Jones, D. Szymanski, R. Oulton, A. C. T. Thijssen, M. S. Skolnick, D. M. Whittaker, T. F. Krauss, and A. M. Fox  »View Author Affiliations


Optics Express, Vol. 19, Issue 6, pp. 5670-5675 (2011)
http://dx.doi.org/10.1364/OE.19.005670


View Full Text Article

Enhanced HTML    Acrobat PDF (1534 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the energy splitting, quality factor and polarization of the fundamental modes of coupled L3 photonic crystal cavities. Four different geometries are evaluated theoretically, before experimentally investigating coupling in a direction at 30° to the line of the cavities. In this geometry, a smooth variation of the energy splitting with the cavity separation is predicted and observed, together with significant differences between the polarizations of the bonding and anti-bonding states. The controlled splitting of the coupled states is potentially useful for applications that require simultaneous resonant enhancement of two transitions.

© 2011 Optical Society of America

OCIS Codes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(230.4555) Optical devices : Coupled resonators
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: December 23, 2010
Revised Manuscript: February 25, 2011
Manuscript Accepted: February 25, 2011
Published: March 11, 2011

Citation
A. R. A. Chalcraft, S. Lam, B. D. Jones, D. Szymanski, R. Oulton, A. C. T. Thijssen, M. S. Skolnick, D. M. Whittaker, T. F. Krauss, and A. M. Fox, "Mode structure of coupled L3 photonic crystal cavities," Opt. Express 19, 5670-5675 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-6-5670


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003). [CrossRef]
  2. S. V. Boriskina, Photonic molecules and spectral engineering in Photonic microresonator research and applications, I. Chremmos, O. Schwelb, and N. Uzonoglu, eds. (Springer, New York, 2010), pp 393–421. [CrossRef]
  3. T. D. Happ, M. Kamp, A. Forchel, A. V. Bazhenov, I. I. Tartakovskii, A. Gorbunov, and V. D. Kulakovskii, “Coupling of point-defect microcavities in two-dimensional photonic-crystal slabs,” J. Opt. Soc. Am. B 20, 373–378 (2003). [CrossRef]
  4. S. Ishii, K. Nozaki, and T. Baba, “Photonic Molecules in Photonic Crystals,” Jpn. J. Appl. Phys. 45, 6108–6111 (2006). [CrossRef]
  5. D. O’Brien, M. D. Settle, T. Karle, A. Michaeli, M. Salib, and T. F. Krauss, “Coupled photonic crystal heterostructure nanocavities,” Opt. Express 15, 1228–1233 (2007). [CrossRef]
  6. K. Atlasov, K. F. Karlsson, A. Rudra, B. Dwir, and E. Kapon, “Wavelength and loss splitting in directly coupled photonic-crystal defect microcavities,” Opt. Express 16, 16255–16264 (2008). [CrossRef] [PubMed]
  7. S. Vignolini, F. Intonit, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94, 151103 (2009). [CrossRef]
  8. M. Benyoucef, S. Kiravittaya, Y. F. Mei, A. Rastelli, and O. G. Schmidt, “Strongly coupled semiconductor microcavities: A route to couple artificial atoms over micrometric distances,” Phys. Rev. B 77, 035108 (2008). [CrossRef]
  9. H. Lin, J.-H. Chen, S.-S. Chao, M.-C. Lo, S.-D. Lin, and W.-H. Chang, “Strong coupling of different cavity modes in photonic molecules formed by two adjacent microdisk microcavities,” Opt. Express 18, 23948–23956 (2010). [CrossRef] [PubMed]
  10. B. M. Möller, U. Woggon, M. V. Artemyev, and R. Wannemacher, “Photonic molecules doped with semiconductor nanocrystals,” Phys. Rev. B 70, 115323 (2004). [CrossRef]
  11. A. Dousse, J. Suffczynski, O. Krebs, A. Beveratos, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010). [CrossRef] [PubMed]
  12. A. Dousse, J. Suffczyński, A. Beveratos, and O. Krebs, “A. Lemaˆıtre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “A quantum dot based bright source of entangled photon pairs operating at 53 K,” Appl. Phys. Lett. 97, 081104 (2010). [CrossRef]
  13. J. Cho, D. G. Angelakis, and S. Bose, “Heralded generation of entanglement with coupled cavities,” Phys. Rev. A 78, 022323 (2008). [CrossRef]
  14. D. Gerace, H. E. Tŭreci, A. Imamoğlu, V. Giovanetti, and R. Fazio, “The quantum-optical Josephson interferometer,” Nat. Phys. 5, 281–284 (2009). [CrossRef]
  15. D. M. Whittaker, I. S. Culshaw, V. N. Astratov, and M. S. Skolnick, “Photonic band structure of patterned waveguides with dielectric and metallic cladding,” Phys. Rev. B 65, 073102 (2002). [CrossRef]
  16. L. C. Andreani and M. Agio, “Photonic bands and gap maps in a photonic crystal slab,” IEEE J. Quantum Electron. 38, 891–898 (2002). [CrossRef]
  17. L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B 73, 235114 (2006). [CrossRef]
  18. A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90, 241117 (2007). [CrossRef]
  19. The modal volumes are similar for B and AB modes, and vary by less than 10% over the range of separations considered. For example, at smallest separation, the B and AB values are 1.64(⌊ /n)3 and 1.77(⌊ /n)3 respectively. This compares with V = 0.76(⌊ /n)3 for an isolated cavity in the same lattice.
  20. Three other modes exist between the _ + −1_ and _−−2_ modes. Unfortunately, the close spacings and low qualityfactors of these other modes [18] make it impractical to identify their peaks unambiguosly in Fig. 3. It is, however,likely that the predicted 1.5 meV splitting of the _ + + 1_ mode is responsible for the most prominent features; thepredicted splittings of the other two modes are insufficient to explain the peak around 1.32 eV.21.
  21. Note that the results for the FDTD simluations become inaccurate for the largest cavity separation, since theintensity above the center of the double cavity becomes very low.
  22. E. Gallardo, L. J. Martínez, A. K. Nowak, H. P. van der Meulen, J. M. Calleja, C. Tejedor, I. Prieto, D. Granados, A. G. Taboada, J. M. García, and P. A. Postigo, “Emission polarization control in semiconductor quantum dots coupled to a photonic crystal microcavity,” Opt. Express 18, 13301–13308 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited