OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 6 — Mar. 14, 2011
  • pp: 5690–5697

Femtosecond pulse damage thresholds of dielectric coatings in vacuum

Duy N. Nguyen, Luke A. Emmert, Paul Schwoebel, Dinesh Patel, Carmen S. Menoni, Michelle Shinn, and Wolfgang Rudolph  »View Author Affiliations

Optics Express, Vol. 19, Issue 6, pp. 5690-5697 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (893 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The dielectric breakdown behavior of dielectric coatings in studied for different ambient gas pressures with femtosecond laser pulses. At 10−7 Torr, the multiple femtosecond pulse damage threshold, Fm, is about 10% of the single pulse damage fluence F(1) for hafnia and silica films compared to about 65% and 50%, respectively, at 630 Torr. In contrast, the single-pulse damage threshold is pressure independent. The decrease of Fm with decreasing air pressure correlates with the water vapor and oxygen content of the ambient gas with the former having the greater effect. The decrease in Fm is likely associated with an accumulation of defects derived from oxygen deficiency, for example vacancies. From atmospheric air pressure to pressures of ~3x10−6 Torr, the damage “crater” starts deterministically at the center of the beam and grows in diameter as the fluence increases. At pressure below 3x10−6 Torr, damage is initiated at random “sites” within the exposed area in hafnia films, while the damage morphology remains deterministic in silica films. A possible explanation is that absorbing centers are created at predisposed sample sites in hafnia, for example at boundaries between crystallites, or crystalline and amorphous phases.

© 2011 OSA

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(140.7090) Lasers and laser optics : Ultrafast lasers
(310.6870) Thin films : Thin films, other properties

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 9, 2011
Revised Manuscript: March 2, 2011
Manuscript Accepted: March 3, 2011
Published: March 11, 2011

Duy N. Nguyen, Luke A. Emmert, Paul Schwoebel, Dinesh Patel, Carmen S. Menoni, Michelle Shinn, and Wolfgang Rudolph, "Femtosecond pulse damage thresholds of dielectric coatings in vacuum," Opt. Express 19, 5690-5697 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ansmann, U. Wandinger, O. Le Rille, D. Lajas, and A. G. Straume, “Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: methodology and simulations,” Appl. Opt. 46(26), 6606–6622 (2007). [CrossRef] [PubMed]
  2. M. D. Perry and G. Mourou, “Terawatt to petawatt subpicosecond lasers,” Science 264(5161), 917–924 (1994). [CrossRef] [PubMed]
  3. J. C. Livas and B. C. Moore, “LIGO vacuum system study,” J. Environ. Sci. (China) 32(6), 28–32 (1989).
  4. G. M. Harry, M. R. Abernathy, A. E. Becerra-Toledo, H. Armandula, E. Black, K. Dooley, M. Eichenfield, C. Nwabugwu, A. Villar, D. R. M. Crooks, G. Cagnoli, J. Hough, C. R. How, I. MacLaren, P. Murray, S. Reid, S. Rowan, P. H. Sneddon, M. M. Fejer, R. Route, S. D. Penn, P. Ganau, J.-M. Mackowski, C. Michel, L. Pinard, and A. Remillieux, “Titania-doped tantala/silica coatings for gravitational-wave detection,” Class. Quantum Gravity 24(2), 405–415 (2007). [CrossRef]
  5. K. Yamada, T. Yamazaki, N. Sei, T. Shimizu, R. Suzuki, T. Ohdaira, M. Kawai, M. Yokoyama, S. Hamada, K. Saeki, E. Nishimura, T. Mikado, T. Noguchi, S. Sugiyama, M. Chiwaki, H. Ohgaki, and T. Tomimasu, “Degradation and restoration of dielectric-coated cavity mirrors in the NIJI-IV FEL,” Nucl. Instrum. Meth. A 358(1-3), 392–395 (1995). [CrossRef]
  6. S. Becker, A. Pereira, P. Bouchut, F. Geffraye, and C. Anglade, “Laser-induced contamination of silica coatings in vacuum,” Proc. SPIE 6403, 64030J, 64030J-12 (2006). [CrossRef]
  7. R. R. Kunz, V. Liberman, and D. K. Downs, “Experimentation and modeling of organic photocontamination on lithographic optics,” J. Vac. Sci. Technol. B 18(3), 1306–1313 (2000). [CrossRef]
  8. L. Jensen, M. Jupe, H. Madebach, H. Ehlers, K. Starke, D. Ristau, W. Riede, P. Allenspacher, and H. Schroeder, “Damage threshold investigations of high power laser optics under atmospheric and vacuum conditions,” Proc. SPIE 6403, 64030U, 64030U-10 (2006). [CrossRef]
  9. F. E. Hovis, B. Shepherd, C. Radcliffe, and H. Maliborski, “Mechanisms of contamination induced optical damage in lasers,” Proc. SPIE 2428, 72–83 (1994). [CrossRef]
  10. W. Riede, P. Allenspacher, H. Schroeder, D. Wernham, and Y. Lien, “Laser-induced hydrocarbon contamination in vacuum,” Proc. SPIE 5991, 59910H, 59910H-13 (2005). [CrossRef]
  11. A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys., A Mater. Sci. Process. 69(7), S373–S376 (1999). [CrossRef]
  12. M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Krüger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005). [CrossRef]
  13. A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003). [CrossRef]
  14. K. Starke and D. Ristau, “S., Martin, A. Hertwig, J. Krueger, P. Allenspacher, W. Riede, S. Meister, C. Theiss, A. J. Sabbah, W. Rudolph, V. Raab, R. Grigonis, T. Rikickas, V. Sirutkaitis, “Results of a round-robin experiment in multiple-pulse LIDT measurement with ultrashort pulses,” Proc. SPIE 5273, 388–395 (1994). [CrossRef]
  15. B. Langdon, D. Patel, E. Krous, J. J. Rocca, C. S. Menoni, F. Tomasel, S. Kholi, P. R. McCurdy, P. Langston, and A. Ogloza, “Influence of process conditions on the optical properties HfO2/SiO2 thin films for high power laser coatings,” Proc. SPIE 6720, 67200X, 67200X-8 (2007). [CrossRef]
  16. L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108(4), 043523 (2010). [CrossRef]
  17. D. N. Nguyen, L. A. Emmert, W. Rudolph, D. Patel, E. Krous, C. S. Menoni, and M. Shinn, “Studies of femtosecond laser induced damage of HfO2 thin film in atmospheric and vacuum environment,” Proc. SPIE 7504, 750403, 750403-8 (2009). [CrossRef]
  18. C. T. Scurlock, “A phenomenological study of the effect of trace contamination on lifetime reduction and laser-induced damage for optics,” Proc. SPIE 5647, 86–94 (2005). [CrossRef]
  19. D. R. Lide, “CRC: Handbook of chemistry and physics,” CRC Press, Inc. 73th ed., pp. 6–11 (1992).
  20. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996). [CrossRef] [PubMed]
  21. M. Mero, J. Zeller, and W. Rudolph, “Ultrafast processes in highly excited wide-gap dielectric thin films.” In: P. Hannaford (Ed.), in Femtosecond Laser Spectroscopy, (Springer, New York 2005).
  22. M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71(11), 115109 (2005). [CrossRef]
  23. A. S. Foster, F. Lopez Gejo, A. L. Shluger, and R. M. Nieminen, “Vacancy and interstitial defects in hafnia,” Phys. Rev. B 65(17), 174117 (2002). [CrossRef]
  24. H. Takeuchi, D. Ha, and T. J. King, “Observation of Bulk HfO2 defects by spectroscopic ellipsometry,” J. Vac. Sci. Technol. A 22(4), 1337–1341 (2004). [CrossRef]
  25. M.D. Shinn, “Irradiation of hafnia/silica multilayer coatings with a high average power FEL”, JLAB-TN-11–001.
  26. D. Ugolini, R. McKinney, and G. M. Harry, “Developing an optical chopper-modulated capacitive probe for measuring surface charge,” Rev. Sci. Instrum. 78(4), 046102 (2007). [CrossRef] [PubMed]
  27. F. E. Domann, M. F. Becker, A. H. Guenther, and A. F. Stewart, “Charged particle emission related to laser damage,” Appl. Opt. 25(9), 1371–1373 (1986). [CrossRef] [PubMed]
  28. S. R. George, J. A. Leraas, S. C. Langford, and J. T. Dickinson, “Interaction of vacuum ultraviolet excimer laser radiation with fused silica, I. Positive ion emission,” J. Appl. Phys. 107(3), 033107 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited