OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 19, Iss. 7 — Mar. 28, 2011
  • pp: 5725–5734

Time-resolved interferometry of femtosecond-laser-induced processes under tight focusing and close-to-optical breakdown inside borosilicate glass

Yoshio Hayasaki, Mitsuhiro Isaka, Akihiro Takita, and Saulius Juodkazis  »View Author Affiliations


Optics Express, Vol. 19, Issue 7, pp. 5725-5734 (2011)
http://dx.doi.org/10.1364/OE.19.005725


View Full Text Article

Enhanced HTML    Acrobat PDF (1210 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We use an interferometric time-resolved observation of a femtosecond-laser pulse (800nm/45fs) interaction with glass from 100 fs to 10 ns at spatial lateral resolution down to the wavelength of the pulse. The phase and amplitude images reveal sequence of events after the irradiation of a single ultra-short laser pulse at close-to-threshold intensity when permanent refractive index changes occur. The proposed method is applicable to characterization of the processes induced by tightly focused fs-laser pulses during three-dimensional structuring of glasses and crystals for fundamental studies and optical applications. Generation of carriers, thermal expansion, generation and propagation of shockwaves, and formation of refractive index changes are experimentally observed and resolved in time and space with the highest resolution. Quantitative estimations of the threshold energies of different processes are achieved. The threshold energy of carrier generation is found the same as that of shockwave generation while the threshold energy of refractive index changes was by 40% higher. Application potential of the method is discussed.

© 2011 OSA

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(320.7120) Ultrafast optics : Ultrafast phenomena
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Laser Microfabrication

History
Original Manuscript: December 20, 2010
Revised Manuscript: February 14, 2011
Manuscript Accepted: February 28, 2011
Published: March 14, 2011

Citation
Yoshio Hayasaki, Mitsuhiro Isaka, Akihiro Takita, and Saulius Juodkazis, "Time-resolved interferometry of femtosecond-laser-induced processes under tight focusing and close-to-optical breakdown inside borosilicate glass," Opt. Express 19, 5725-5734 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-7-5725


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. E. Bell and J. A. Landt, “Laser-induced high-pressure shock waves in water,” Appl. Phys. Lett. 10(2), 46–48 (1967). [CrossRef]
  2. D. C. Emmony, M. Siegrist, and F. K. Kneubühl, “Laser-induced shock waves in liquids,” Appl. Phys. Lett. 29(9), 547–549 (1976). [CrossRef]
  3. A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996). [CrossRef]
  4. C. B. Schaffer, N. Nishimura, E. N. Glezer, A. M.-T. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10(3), 196–203 (2002). [PubMed]
  5. E. Abraham, K. Minoshima, and H. Matsumoto, “Femtosecond laser-induced breakdown in water: time-resolved shadow imaging and two-color interferometric imaging,” Opt. Commun. 176(4-6), 441–452 (2000). [CrossRef]
  6. X. Zeng, X. Mao, S. S. Mao, A.-B. Wen, R. Greif, and E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett. 88(6), 061502 (2006). [CrossRef]
  7. X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation on silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005). [CrossRef]
  8. R. Petkovšek and P. Gregorčič, “A laser probe measurement of cavitation bubble dynamics improved by shock wave detection and compared to shadow photography,” J. Appl. Phys. 102(4), 044909 (2007). [CrossRef]
  9. W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz de la Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93(12), 121109 (2008). [CrossRef]
  10. A. Gopal, S. Minardi, and M. Tatarakis, “Quantitative two-dimensional shadowgraphic method for high-sensitivity density measurement of under-critical laser plasmas,” Opt. Lett. 32(10), 1238–1240 (2007). [CrossRef] [PubMed]
  11. Q. Sun, H. Jiang, Y. Liu, Z. Wu, H. Yang, and Q. Gong, “Measurement of the collision time of dense electronic plasma induced by a femtosecond laser in fused silica,” Opt. Lett. 30(3), 320–322 (2005). [CrossRef] [PubMed]
  12. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, “ “Ultrafast imaging interferometry at femtosecond-laser-excited surfaces,” J. Opt. Soc. Am. B 23(9), 1954–1964 (2006). [CrossRef]
  13. A. Takita and Y. Hayasaki, “Interference measurement of superposition of laser-induced shock waves in water,” Jpn. J. Appl. Phys. 48(9), 09LD04 (2009). [CrossRef]
  14. Z. Liu, G. J. Steckman, and D. Psaltis, “Holographic recording of fast phenomena,” Appl. Phys. Lett. 80(5), 731–733 (2002). [CrossRef]
  15. M. Centurion, Y. Pu, Z. Liu, D. Psaltis, and T. W. Hänsch, “Holographic recording of laser-induced plasma,” Opt. Lett. 29(7), 772–774 (2004). [CrossRef] [PubMed]
  16. X. Wang, H. Zhai, and G. Mu, “Pulsed digital holography system recording ultrafast process of the femtosecond order,” Opt. Lett. 31(11), 1636–1638 (2006). [CrossRef] [PubMed]
  17. T. Balciunas, A. Melninkaitis, G. Tamosauskas, and V. Sirutkaitis, “Time-resolved off-axis digital holography for characterization of ultrafast phenomena in water,” Opt. Lett. 33(1), 58–60 (2008). [CrossRef]
  18. S. Minardi, A. Gopal, M. Tatarakis, A. Couairon, G. Tamošauskas, R. Piskarskas, A. Dubietis, and P. Di Trapani, “Time-resolved refractive index and absorption mapping of light-plasma filaments in water,” Opt. Lett. 33(1), 86–88 (2008). [CrossRef]
  19. Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005). [CrossRef]
  20. J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91(8), 082902 (2007). [CrossRef]
  21. A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009). [CrossRef]
  22. C. B. Schaffer, A. O. Jamison, and E. Mazur, “Morphology of femtosecond laser-induced structural changes in bulk transparent materials,” Appl. Phys. Lett. 84(9), 1441 (2004). [CrossRef]
  23. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21(24), 2023–2025 (1996). [CrossRef] [PubMed]
  24. K. Yamasaki, S. Juodkazis, M. Watanabe, H.-B. Sun, S. Matsuo, and H. Misawa, “Recording by microexplosion and two photon reading of three dimensional optical memory in polymethylmethacrylate films,” Appl. Phys. Lett. 76(8), 1000–1002 (2000). [CrossRef]
  25. A. Takita, H. Yamamoto, Y. Hayasaki, N. Nishida, and H. Misawa, “Three-dimensional optical memory using a human fingernail,” Opt. Express 13(12), 4560–4567 (2005). [CrossRef] [PubMed]
  26. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  27. M. Ams, G. D. Marshall, D. J. Spence, and M. J. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express 13(15), 5676–5681 (2005). [CrossRef] [PubMed]
  28. N. Takeshima, Y. Narita, S. Tanaka, Y. Kuroiwa, and K. Hirao, “Fabrication of high-efficiency diffraction gratings in glass,” Opt. Lett. 30(4), 352–354 (2005). [CrossRef] [PubMed]
  29. H.-B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74(6), 786–788 (1999). [CrossRef]
  30. T. Kaji, S. Ito, H. Miyasaka, Y. Hosokawa, H. Masuhara, C. Shukunami, and Y. Hiraki, “Nondestructive micropatterning of living animal cells using focused femtosecond laser-induced impulsive force,” Appl. Phys. Lett. 91(2), 023904 (2007). [CrossRef]
  31. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based tomography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982). [CrossRef]
  32. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006). [CrossRef] [PubMed]
  33. T. Hashimoto, S. Juodkazis, and H. Misawa, “Void formation in glasses,” N. J. Phys. 9(8), 253 (2007). [CrossRef]
  34. M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010). [CrossRef]
  35. J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of the femtosecond-laser-structured and stress-induced birefringent regions in sapphire,” Opt. Express 18(8), 8300–8310 (2010). [CrossRef] [PubMed]
  36. T. M. Gross and M. Tomozawa, “Fictive temperature of GeO2 glass: its determination by IR method and its effects on density and refractive index,” J. Non-Cryst. Solids 353(52-54), 4762–4766 (2007). [CrossRef]
  37. A. Mermillod-Blondin, I. M. Burakov, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77(10), 104205 (2008). [CrossRef]
  38. L. Hallo, A. Bourgeade, V. T. Tikhonchuk, C. Mezel, and J. Breil, “Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: Blast-wave launch and cavity formation,” Phys. Rev. B 76(2), 024101 (2007). [CrossRef]
  39. M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 4
 
Fig. 3
 

Multimedia

Multimedia FilesRecommended Software
» Media 1: MPG (2448 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited