OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 19, Iss. 7 — Mar. 28, 2011
  • pp: 6078–6092

Newtonian photorealistic ray tracing of grating cloaks and correlation-function-based cloaking-quality assessment

Jad C. Halimeh, Roman Schmied, and Martin Wegener  »View Author Affiliations


Optics Express, Vol. 19, Issue 7, pp. 6078-6092 (2011)
http://dx.doi.org/10.1364/OE.19.006078


View Full Text Article

Enhanced HTML    Acrobat PDF (2105 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Grating cloaks are a variation of dielectric carpet (or ground-plane) cloaks. The latter were introduced by Li and Pendry. In contrast to the numerical work involved in the quasi-conformal carpet cloak, the refractive-index profile of a conformal grating cloak follows a closed and exact analytical form. We have previously mentioned that finite-size conformal grating cloaks may exhibit better cloaking than usual finite-size carpet cloaks. In this paper, we directly visualize their performance using photorealistic ray-tracing simulations. We employ a Newtonian approach that is advantageous compared to conventional ray tracing based on Snell’s law. Furthermore, we quantify the achieved cloaking quality by computing the cross-correlations of rendered images. The cross-correlations for the grating cloak are much closer to 100% (i.e., ideal) than those for the Gaussian carpet cloak.

© 2011 OSA

OCIS Codes
(080.0080) Geometric optics : Geometric optics
(080.2710) Geometric optics : Inhomogeneous optical media
(160.3918) Materials : Metamaterials
(230.3205) Optical devices : Invisibility cloaks

History
Original Manuscript: December 23, 2010
Revised Manuscript: February 9, 2011
Manuscript Accepted: February 10, 2011
Published: March 17, 2011

Citation
Jad C. Halimeh, Roman Schmied, and Martin Wegener, "Newtonian photorealistic ray tracing of grating cloaks and correlation-function-based cloaking-quality assessment," Opt. Express 19, 6078-6092 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-7-6078


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  2. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006). [CrossRef] [PubMed]
  3. V. M. Shalaev, “Physics. Transforming light,” Science 322(5900), 384–386 (2008). [CrossRef] [PubMed]
  4. H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010). [CrossRef] [PubMed]
  5. M. Wegener and S. Linden, “Shaping optical space with metamaterials,” Phys. Today 63(10), 32–36 (2010). [CrossRef]
  6. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008). [CrossRef] [PubMed]
  7. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009). [CrossRef] [PubMed]
  8. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009). [CrossRef] [PubMed]
  9. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009). [CrossRef]
  10. J. H. Lee, J. Blair, V. A. Tamma, Q. Wu, S. J. Rhee, C. J. Summers, and W. Park, “Direct visualization of optical frequency invisibility cloak based on silicon nanorod array,” Opt. Express 17(15), 12922–12928 (2009). [CrossRef] [PubMed]
  11. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010). [CrossRef] [PubMed]
  12. H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1(3), 1–6 (2010). [CrossRef]
  13. B. Zhang, T. Chan, and B.-I. Wu, “Lateral shift makes a ground-plane cloak detectable,” Phys. Rev. Lett. 104(23), 233903 (2010). [CrossRef] [PubMed]
  14. J. C. Halimeh, T. Ergin, J. Mueller, N. Stenger, and M. Wegener, “Photorealistic images of carpet cloaks,” Opt. Express 17(22), 19328–19336 (2009). [CrossRef] [PubMed]
  15. R. Schmied, J. C. Halimeh, and M. Wegener, “Conformal carpet and grating cloaks,” Opt. Express 18(23), 24361–24367 (2010). [CrossRef] [PubMed]
  16. A. S. Glassner, An Introduction to Ray Tracing (Morgan Kaufmann, 1989).
  17. G. Dolling, M. Wegener, S. Linden, and C. Hormann, “Photorealistic images of objects in effective negative-index materials,” Opt. Express 14(5), 1842–1849 (2006). [CrossRef] [PubMed]
  18. A. J. Danner, “Visualizing invisibility: metamaterials-based optical devices in natural environments,” Opt. Express 18(4), 3332–3337 (2010). [CrossRef] [PubMed]
  19. T. Ergin, J. C. Halimeh, N. Stenger, and M. Wegener, “Optical microscopy of 3D carpet cloaks:ray-tracing calculations,” Opt. Express 18(19), 20535–20545 (2010). [CrossRef] [PubMed]
  20. J. L. Synge, Geometrical Mechanics and De Broglie Waves (Cambridge U. Press, 1954).
  21. M. Born, and E. Wolf, Principles of Optics (Pergamon, 1970).
  22. J. S. Desjardins, “Time-dependent geometrical optics,” J. Opt. Soc. Am. 66(10), 1042–1047 (1976). [CrossRef]
  23. J. Molcho and D. Censor, “A simple derivation and an example of Hamiltonian ray propagation,” Am. J. Phys. 54(4), 351–353 (1986). [CrossRef]
  24. P. S. J. Russell and T. A. Birks, “Hamiltonian optics of nonuniform photonic crystals,” J. Lightwave Technol. 17(11), 1982–1988 (1999). [CrossRef]
  25. C. Bellver-Cebreros and M. Rodriguez-Danta, “Eikonal equation from continuum mechanics and analogy between equilibrium of a string and geometrical light rays,” Am. J. Phys. 69(3), 360–367 (2001). [CrossRef]
  26. Y. Jiao, S. Fan, and D. A. B. Miller, “Designing for beam propagation in periodic and nonperiodic photonic nanostructures: extended Hamiltonian method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036612 (2004). [CrossRef] [PubMed]
  27. D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14(21), 9794–9804 (2006). [CrossRef] [PubMed]
  28. D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys. 5(9), 687–692 (2009). [CrossRef]
  29. K. Niu, C. Song, and M.-L. Ge, “The geodesic form of light-ray trace in the inhomogeneous media,” Opt. Express 17(14), 11753–11767 (2009). [CrossRef] [PubMed]
  30. M. James, Pattern Recognition (John Wiley & Sons, 1988). [PubMed]
  31. J. L. Rodgers and W. A. Nicewander, “Thirteen ways to look at the correlation coefficient,” Am. Stat. 42(1), 59–66 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited