OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 19, Iss. 7 — Mar. 28, 2011
  • pp: 6354–6365

Coupling slot-waveguide cavities for large-scale quantum optical devices

Chun-Hsu Su, Mark P. Hiscocks, Brant C. Gibson, Andrew D. Greentree, Lloyd C. L. Hollenberg, and François Ladouceur  »View Author Affiliations


Optics Express, Vol. 19, Issue 7, pp. 6354-6365 (2011)
http://dx.doi.org/10.1364/OE.19.006354


View Full Text Article

Enhanced HTML    Acrobat PDF (1288 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By offering effective modal volumes significantly less than a cubic wavelength, slot-waveguide cavities offer a new in-road into strong atom-photon coupling in the visible regime. Here we explore two-dimensional arrays of coupled slot cavities which underpin designs for novel quantum emulators and polaritonic quantum phase transition devices. Specifically, we investigate the lateral coupling characteristics of diamond-air and GaP-air slot waveguides using numerically-assisted coupled-mode theory, and the longitudinal coupling properties via distributed Bragg reflectors using mode-propagation simulations. We find that slot-waveguide cavities in the Fabry-Perot arrangement can be coupled and effectively treated with a tight-binding description, and are a suitable platform for realizing Jaynes-Cummings-Hubbard physics.

© 2011 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.5750) Optical devices : Resonators
(230.7380) Optical devices : Waveguides, channeled
(230.4555) Optical devices : Coupled resonators
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Integrated Optics

History
Original Manuscript: November 29, 2010
Manuscript Accepted: February 17, 2011
Published: March 21, 2011

Citation
Chun-Hsu Su, Mark P. Hiscocks, Brant C. Gibson, Andrew D. Greentree, Lloyd C. L. Hollenberg, and François Ladouceur, "Coupling slot-waveguide cavities for large-scale quantum optical devices," Opt. Express 19, 6354-6365 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-7-6354


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Feynman, “Simulating physics with computers,” Int. J. Theor. Phys. 21(6-7), 467–488 (1982). [CrossRef]
  2. I. Buluta and F. Nori, “Quantum simulators,” Science 326(5949), 108–111 (2009). [CrossRef] [PubMed]
  3. M. J. Hartmann, F. G. S. L. Brandão, and M. B. Plenio, “Strongly interacting polaritons in coupled arrays of cavities,” Nat. Phys. 2(12), 849–855 (2006). [CrossRef]
  4. A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, “Quantum phase transitions of light,” Nat. Phys. 2(12), 856–861 (2006). [CrossRef]
  5. D. G. Angelakis, M. F. Santos, and S. Bose, “Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays,” Phys. Rev. A 76(3), 031805 (2007). [CrossRef]
  6. J. Koch, A. A. Houck, K. L. Hur, and S. M. Girvin, “Time-reversal-symmetry breaking in circuit-QED based photon lattices,” Phys. Rev. A 82(4), 043811 (2010). [CrossRef]
  7. J. Q. Quach, C.-H. Su, A. M. Martin, A. D. Greentree, and L. C. L. Hollenberg, “A new class of dynamic quantum metamaterials,” http://arxiv.org/abs/1009.4867 (2010).
  8. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007). [CrossRef]
  9. A. D. Greentree, B. A. Fairchild, F. Hossain, and S. Prawer, “Diamond integrated quantum photonics,” Mater. Today 11(9), 22–31 (2008). [CrossRef]
  10. M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10(3), 891–895 (2010). [CrossRef] [PubMed]
  11. K.-M. C. Fu, C. Santori, C. Stanley, M. C. Holland, and Y. Yamamoto, “Coherent population trapping of electron spins in a high-purity n-type GaAs semiconductor,” Phys. Rev. Lett. 95(18), 187405 (2005). [CrossRef] [PubMed]
  12. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007). [CrossRef] [PubMed]
  13. M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008). [CrossRef]
  14. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004). [CrossRef] [PubMed]
  15. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29(14), 1626–1628 (2004). [CrossRef] [PubMed]
  16. C. A. Barrios and M. Lipson, “Electrically driven silicon resonant light emitting device based on slot-waveguide,” Opt. Express 13(25), 10092–10101 (2005). [CrossRef] [PubMed]
  17. J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95(14), 143901 (2005). [CrossRef] [PubMed]
  18. A. Gondarenko and M. Lipson, “Low modal volume dipole-like dielectric slab resonator,” Opt. Express 16(22), 17689–17694 (2008). [CrossRef] [PubMed]
  19. M. P. Hiscocks, C.-H. Su, B. C. Gibson, A. D. Greentree, L. C. L. Hollenberg, and F. Ladouceur, “Slot-waveguide cavities for optical quantum information applications,” Opt. Express 17(9), 7295–7303 (2009). [CrossRef] [PubMed]
  20. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85(2), 290–293 (2000). [CrossRef] [PubMed]
  21. F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93(13), 130501 (2004). [CrossRef] [PubMed]
  22. T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2(6), 408–413 (2006). [CrossRef]
  23. C.-H. Su, A. D. Greentree, W. J. Munro, K. Nemoto, and L. C. L. Hollenberg, “High-speed quantum gates with cavity quantum electrodynamics,” Phys. Rev. A 78(6), 062336 (2008). [CrossRef]
  24. C.-H. Su, A. D. Greentree, W. J. Munro, K. Nemoto, and L. C. L. Hollenberg, “Pulse shaping by coupled cavities: single photons and qudits,” Phys. Rev. A 80(3), 033811 (2009). [CrossRef]
  25. A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett. 89(18), 187901 (2002). [CrossRef] [PubMed]
  26. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24(11), 711–713 (1999). [CrossRef]
  27. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983). [CrossRef]
  28. K.-M. C. Fu, C. Santori, P. E. Barclay, I. Aharonovich, S. Prawer, N. Meyer, A. M. Holm, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers in diamond to a GaP waveguide,” Appl. Phys. Lett. 93(23), 234107 (2008). [CrossRef]
  29. M. P. Hiscocks, K. Ganesan, B. C. Gibson, S. T. Huntington, F. Ladouceur, and S. Prawer, “Diamond waveguides fabricated by reactive ion etching,” Opt. Express 16(24), 19512–19519 (2008). [CrossRef] [PubMed]
  30. F. Dell’Olio and V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15(8), 4977–4993 (2007). [CrossRef] [PubMed]
  31. A. Säynätjoki, T. Alasaarela, A. Khanna, L. Karvonen, P. Stenberg, M. Kuittinen, A. Tervonen, and S. Honkanen, “Angled sidewalls in silicon slot waveguides: conformal filling and mode properties,” Opt. Express 17(23), 21066–21076 (2009). [CrossRef] [PubMed]
  32. W.-P. Huang, “Coupled-mode theory for optical waveguides: an overview,” J. Opt. Soc. Am. A 11(3), 963–983 (1994). [CrossRef]
  33. A. W. Synder and J. D. Love, Optical Waveguide Theory (Kluwer Academic Publishers, 2000), Chap. 29.
  34. M. L. Cooper and S. Mookherjea, “Numerically-assisted coupled-mode theory for silicon waveguide couplers and arrayed waveguides,” Opt. Express 17(3), 1583–1599 (2009). [CrossRef] [PubMed]
  35. E. Kapon, J. Katz, and A. Yariv, “Supermode analysis of phase-locked arrays of semiconductor lasers,” Opt. Lett. 9(4), 125–127 (1984). [CrossRef] [PubMed]
  36. FIMMWAVE, Photon Design, http://www.photond.com .
  37. Y. O. Barmenkov, D. Zalvidea, S. Torres-Peiró, J. L. Cruz, and M. V. Andrés, “Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings,” Opt. Express 14(14), 6394–6399 (2006). [CrossRef] [PubMed]
  38. FIMMPROP, Photon Design, http://www.photond.com .
  39. J. Mu, H. Zhang, and W.-P. Huang, “A theoretical investigation of slot waveguide Bragg gratings,” IEEE J. Quantum Electron. 44(7), 622–627 (2008). [CrossRef]
  40. M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “Integrated waveguide Fabry-Perot microcavities with silicon/air Bragg mirrors,” Opt. Lett. 32(5), 533–535 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited