OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 19, Iss. 7 — Mar. 28, 2011
  • pp: 6433–6438

1.3 µm Raman-bismuth fiber amplifier pumped by semiconductor disk laser

A. Chamorovskiy, J. Rautiainen, A. Rantamäki, K. M. Golant, and O. G. Okhotnikov  »View Author Affiliations

Optics Express, Vol. 19, Issue 7, pp. 6433-6438 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (852 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A hybrid Raman-bismuth fiber amplifier pumped in co-propagation configuration by a single 1.22 µm semiconductor disk laser is presented. The unique attribute of this dual-gain system is that both amplifiers require the pump source with the same wavelength because pump-Stokes spectral shift in 1.3 µm Raman amplifier and pump-gain bandwidth separation in 1.3 µm bismuth fiber amplifier have the same value. Residual pump power at the output of Raman amplifier in this scheme is efficiently consumed by bismuth-doped fiber thus increasing the overall conversion efficiency. The small-signal gain of 18 dB at 1.3 W of pump power has been achieved for hybrid scheme which is by 9 dB higher as compared with isolated Raman amplifier without bismuth fiber. Low noise performance of pump semiconductor disk laser with RIN of −150 dB/Hz combined with nearly diffraction-limited beam quality and Watt-level output powers allows for efficient core-pumping of a single-mode fiber amplifier systems and opens up new opportunities for amplification in O-band spectral range.

© 2011 OSA

OCIS Codes
(060.2290) Fiber optics and optical communications : Fiber materials
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(140.4480) Lasers and laser optics : Optical amplifiers
(290.5910) Scattering : Scattering, stimulated Raman
(140.7260) Lasers and laser optics : Vertical cavity surface emitting lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 9, 2011
Revised Manuscript: March 10, 2011
Manuscript Accepted: March 11, 2011
Published: March 21, 2011

A. Chamorovskiy, J. Rautiainen, A. Rantamäki, K. M. Golant, and O. G. Okhotnikov, "1.3 µm Raman-bismuth fiber amplifier pumped by semiconductor disk laser," Opt. Express 19, 6433-6438 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. V. Dvoyrin, V. M. Mashinsky, L. I. Bulatov, I. A. Bufetov, A. V. Shubin, M. A. Melkumov, E. F. Kustov, E. M. Dianov, A. A. Umnikov, V. F. Khopin, M. V. Yashkov, and A. N. Guryanov, “Bismuth-doped-glass optical fibers--a new active medium for lasers and amplifiers,” Opt. Lett. 31(20), 2966–2968 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-20-2966 . [CrossRef] [PubMed]
  2. E. Desurvire, Erbium Doped Fiber Amplifiers (John Wiley & Sons Inc., 2002)
  3. M. C. Brierley, P. W. France, and C. A. Millar, “Lasing at 2.08µm and 1.38µm in a holmium doped fluoro-zirconate fibre laser,” Electron. Lett. 24(9), 539–540 (1988). [CrossRef]
  4. Y. Ohishi, T. Kanamori, T. Kitagawa, S. Takahashi, E. Snitzer, and G. H. Sigel., “Pr3+-doped fluoride fiber amplifier operating at 1.31 µm,” Opt. Lett. 16(22), 1747–1749 (1991), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-16-22-1747 . [CrossRef] [PubMed]
  5. E. M. Dianov, D. G. Fursa, A. A. Abramov, M. I. Belovolov, M. M. Bubnov, A. V. Shipulin, A. M. Prokhorov, G. G. Devyatykh, A. N. Gur’yanov, and V. F. Khopin, “Raman fibre-optic amplifier of signals at the wavelength of 1.3 μm,” Quantum Electron. 24(9), 749–751 (1994). [CrossRef]
  6. R. H. Stolen and E. P. Ippen, “Raman gain in glass optical waveguide,” Appl. Phys. Lett. 22(6), 276–278 (1973). [CrossRef]
  7. J. Bromage, “Raman amplification for fiber communications systems,” J. Lightwave Technol. 22(1), 79–93 (2004). [CrossRef]
  8. C. Headley III and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Academic Press, EUA, 2004).
  9. P. B. Hansen, L. Eskildsen, S. G. Grubb, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Capacity upgrades of transmission systems by Raman amplification,” IEEE Photon. Technol. Lett. 9(2), 262–264 (1997). [CrossRef]
  10. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley-Interscience, 2002).
  11. M. N. Islam, Raman Amplifiers for Telecommunications 1: Physical Principles (Springer-Verlag, 2003).
  12. J. Ji, C. A. Codemard, M. Ibsen, J. K. Sahu, and J. Nilsson, “Analysis of the conversion to the first Stokes in cladding-pumped fiber Raman amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 129–139 (2009). [CrossRef]
  13. Oclaro pump laser module datasheet (Olcaro, Inc., 2010), http://www.oclaro.com/product_pages/LC96U_.html .
  14. E. M. Dianov, I. A. Bufetov, M. M. Bubnov, M. V. Grekov, S. A. Vasiliev, and O. I. Medvedkov, “Three-cascaded 1407-nm Raman laser based on phosphorus-doped silica fiber,” Opt. Lett. 25(6), 402–404 (2000). [CrossRef]
  15. O. G. Okhotnikov, ed., Semiconductor Disk Lasers, Physics and Technology (Wiley-VCH, 2010)
  16. G. Baili, F. Bretenaker, M. Alouini, L. Morvan, D. Dolfi, and I. Sagnes, “Experimental investigation and analytical modeling of excess intensity noise in semiconductor class-A lasers,” J. Lightwave Technol. 26(8), 952–961 (2008), http://www.opticsinfobase.org/JLT/abstract.cfm?URI=JLT-26-8-952 . [CrossRef]
  17. V. Pal, P. Trofimoff, B.-X. Miranda, G. Baili, M. Alouini, L. Morvan, D. Dolfi, F. Goldfarb, I. Sagnes, R. Ghosh, and F. Bretenaker, “Measurement of the coupling constant in a two-frequency VECSEL,” Opt. Express 18(5), 5008–5014 (2010). [CrossRef] [PubMed]
  18. J. Yoshida, N. Tsukiji, T. Kimura, M. Funabashi, and T. Fukushima, “Novel concepts in 14XX nm pump lasers for Raman amplifiers,” Proc. SPIE 4870, 149–162 (2002).
  19. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6(6), 1159–1166 (1989). [CrossRef]
  20. J. W. Nicholson, “Dispersion compensating Raman amplifiers with pump reflectors for increased efficiency,” J. Lightwave Technol. 21(8), 1758–1762 (2003). [CrossRef]
  21. T. Amano, K. Okamoto, T. Tsuzaki, M. Kakui, and M. Shigematsu, “Hybrid dispersion compensating Raman amplifier module employing highly nonlinear fiber,” in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper WB3, http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2003-WB3
  22. H. Masuda, “Review of wideband hybrid amplifiers,” Optical Fiber Communication Conference, 2000 (2000), Vol. 1, pp. 2–4.
  23. J. H. Lee, Y. M. Chang, Y.-G. Han, S. H. Kim, H. Chung, and S. B. Lee, “Dispersion-compensating Raman/EDFA hybrid amplifier recycling residual Raman pump for efficiency enhancement,” IEEE Photon. Technol. Lett. 17(1), 43–45 (2005). [CrossRef]
  24. Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys. 40(Part 2, No. 3B2, No. 3B), L279–L281 (2001). [CrossRef]
  25. E. M. Dianov, M. A. Mel'kumov, A. V. Shubin, S. V. Firstov, V. F. Khopin, A. N. Gur'yanov, and I. A. Bufetov, “Bismuth-doped fibre amplifier for the range 1300–1340 nm,” Quantum Electron. 39(12), 1099–1101 (2009). [CrossRef]
  26. B. Pal, ed., Frontiers in Guided Wave Optics and Optoelectronics (InTech, 2010).
  27. A. Chamorovskiy, J. Rautiainen, J. Lyytikäinen, S. Ranta, M. Tavast, A. Sirbu, E. Kapon, and O. G. Okhotnikov, “Raman fiber laser pumped by a semiconductor disk laser and mode locked by a semiconductor saturable absorber mirror,” Opt. Lett. 35(20), 3529–3531 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=ol-35-20-3529 . [CrossRef] [PubMed]
  28. A. Chamorovskiy, A. Rantamäki, A. Sirbu, A. Mereuta, E. Kapon, and O. G. Okhotnikov, “1.38-µm mode-locked Raman fiber laser pumped by semiconductor disk laser,” Opt. Express 18(23), 23872–23877 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-23-23872 . [CrossRef] [PubMed]
  29. R. Hui and M. O’Sullivan, Fiber Optic Measurement Techniques (Elsevier, 2009).
  30. Y. Aoki, “Properties of fiber Raman amplifiers and their applicability to digital optical communication systems,” J. Lightwave Technol. 6(7), 1225–1239 (1988), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4120&isnumber=229 . [CrossRef]
  31. K. Golant, A. Bazakutsa, O. Butov, Yu. Chamorovskij, A. Lanin, and S. Nikitov, “Bismuth-activated silica-core fibres fabricated by SPCVD,” resented at the 36th European Conference and Exhibition on Optical Communication, Torino, Italy, 19–23 Sept. 2010.
  32. G. A. Ball, W. W. Morey, G. Hull-Allen, and C. Holton, “Low-noise single frequency linear fibre laser,” Electron. Lett. 29(18), 1623–1625 (1993). [CrossRef]
  33. A. Ahmad, M. I. Md Ali, A. K. Zamzuri, R. Mohamad, and M. A. Mahdi, “Gain-clamped Raman fiber amplifier in a counter-lasing ring cavity using a pair of circulators,” Microw. Opt. Technol. Lett. 48(4), 721–724 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited