OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 19, Iss. 7 — Mar. 28, 2011
  • pp: 6478–6486

The dressed atom as binary phase modulator: towards attojoule/edge optical phase-shift keying

Joseph Kerckhoff, Michael A. Armen, Dmitri S. Pavlichin, and Hideo Mabuchi  »View Author Affiliations


Optics Express, Vol. 19, Issue 7, pp. 6478-6486 (2011)
http://dx.doi.org/10.1364/OE.19.006478


View Full Text Article

Enhanced HTML    Acrobat PDF (1054 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We use a single 133Cs atom strongly coupled to an optical resonator to induce random binary phase modulation of a near infra-red, ∼ 500pW laser beam, with each modulation edge caused by the dissipation of a single photon (≈ 0.23aJ) by the atom. While our ability to deterministically induce phase edges with an additional optical control beam is limited thus far, theoretical analysis of an analogous, solid-state system indicates that efficient external control should be achievable in demonstrated nanophotonic systems.

© 2011 OSA

OCIS Codes
(020.5580) Atomic and molecular physics : Quantum electrodynamics
(060.5060) Fiber optics and optical communications : Phase modulation
(130.3750) Integrated optics : Optical logic devices
(190.1450) Nonlinear optics : Bistability
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(020.1335) Atomic and molecular physics : Atom optics
(130.4815) Integrated optics : Optical switching devices

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: January 4, 2011
Revised Manuscript: February 22, 2011
Manuscript Accepted: March 2, 2011
Published: March 22, 2011

Citation
Joseph Kerckhoff, Michael A. Armen, Dmitri S. Pavlichin, and Hideo Mabuchi, "The dressed atom as binary phase modulator: towards attojoule/edge optical phase-shift keying," Opt. Express 19, 6478-6486 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-7-6478


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Yang, C. Husko, M. Yu, D.-L. Kwon, and C. W. Wong, “Observation of femtojoule optical bistability in high-Q/Vm silicon photonic crystal nanocavities,” Appl. Phys. Lett. 91, 051113 (2007). [CrossRef]
  2. A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of non-classical light on a chip via photon-induced tunneling and blockade,” Nature Physics 4, 859–863 (2008). [CrossRef]
  3. L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nature Photonics 4, 182–187 (2010). [CrossRef]
  4. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nature Photonics 4, 477–483 (2010). [CrossRef]
  5. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Ch. 6 in Atom-Photon Interactions: Basic Processes and Applications (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004).
  6. H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298, 1372 (2002). [CrossRef] [PubMed]
  7. P. Berman, ed., Cavity Quantum Electrodynamics (San Diego: Academic Press, 1994).
  8. P. Alsing and H. J. Carmichael, “Spontaneous dressed-state polarization of a coupled atom and cavity mode,” Quantum Opt. 3, 13–32 (1991). [CrossRef]
  9. M. A. Armen, A. E. Miller, and H. Mabuchi, “Spontaneous dressed-state polarization in the strong driving regime of cavity QED,” Phys. Rev. Lett. 103, 173601 (2009). [CrossRef] [PubMed]
  10. H. Mabuchi, Q. A. Turchette, M. S. Chapman, and H. J. Kimble, “Real-time detection of individual atoms falling through a high-finesse optical cavity,” Opt. Lett. 21, 1393–1395 (1996). [CrossRef] [PubMed]
  11. O. Cappé, E. Moulines, and T. Rydén, Inference in Hidden Markov Models (Springer Science+Business Media, New York, 2005).
  12. L. R. Welch, “Hidden Markov models and the Baum-Welch algorithm,” IEEE Information Theory Society Newsletter Vol. 53, No. 4 (December2003).
  13. A. J. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum decoding algorithm,” IEEE Trans. Inform. Theory 13260–269 (1967). [CrossRef]
  14. S. M. Tan, “A computational toolbox for quantum and atomic optics,” J. Opt. B: Quantum Semiclass. Opt. 1, 424–432 (1999). [CrossRef]
  15. H. Carmichael, An Open Systems Approach to Quantum Optics (Springer, Berlin, 1993).
  16. A. Faraon, A. Majumder, H. Kim, P. Petroff, and J. Vučković, “Fast electrical control of a quantum dot strongly coupled to a photonic-crystal cavity,” Phys. Rev. Lett. 104, 047402 (2010). [CrossRef] [PubMed]
  17. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 3197 (1983). [CrossRef]
  18. E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE 51, 89 (1963). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited