OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 19, Iss. 7 — Mar. 28, 2011
  • pp: 6623–6634

In vivo three-dimensional optical coherence elastography

Brendan F. Kennedy, Xing Liang, Steven G. Adie, Derek K. Gerstmann, Bryden C. Quirk, Stephen A. Boppart, and David D. Sampson  »View Author Affiliations

Optics Express, Vol. 19, Issue 7, pp. 6623-6634 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1467 KB) ISP Components
Browse Datasets: MIDAS Click for help

Full-Text PDF contains links to datasets. See ISP homepage for software requirements and other information.

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Abstract: We present the first three-dimensional (3D) data sets recorded using optical coherence elastography (OCE). Uni-axial strain rate was measured on human skin in vivo using a spectral-domain optical coherence tomography (OCT) system providing >450 times higher line rate than previously reported for in vivo OCE imaging. Mechanical excitation was applied at a frequency of 125 Hz using a ring actuator sample arm with, for the first time in OCE measurements, a controlled static preload. We performed 3D-OCE, processed in 2D and displayed in 3D, on normal and hydrated skin and observed a more elastic response of the stratum corneum in the hydrated case.

© 2011 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(290.5820) Scattering : Scattering measurements
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: January 4, 2011
Revised Manuscript: February 28, 2011
Manuscript Accepted: March 15, 2011
Published: March 23, 2011

Virtual Issues
Vol. 6, Iss. 4 Virtual Journal for Biomedical Optics

Brendan F. Kennedy, Xing Liang, Steven G. Adie, Derek K. Gerstmann, Bryden C. Quirk, Stephen A. Boppart, and David D. Sampson, "In vivo three-dimensional optical coherence elastography," Opt. Express 19, 6623-6634 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissue (Springer-Verlag, 1993).
  2. J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5(1), 57–78 (2003). [CrossRef] [PubMed]
  3. M. Fatemi, A. Manduca, and J. F. Greenleaf, “Imaging elastic properties of biological tissues by low-frequency harmonic vibration,” Proc. IEEE 91(10), 1503–1519 (2003). [CrossRef]
  4. J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991). [CrossRef] [PubMed]
  5. R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995). [CrossRef] [PubMed]
  6. A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 (2006). [CrossRef] [PubMed]
  7. A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, “MR elastography of breast cancer: preliminary results,” AJR Am. J. Roentgenol. 178(6), 1411–1417 (2002). [PubMed]
  8. D. L. Cochlin, R. H. Ganatra, and D. F. R. Griffiths, “Elastography in the detection of prostatic cancer,” Clin. Radiol. 57(11), 1014–1020 (2002). [CrossRef] [PubMed]
  9. J. Foucher, E. Chanteloup, J. Vergniol, L. Castéra, B. Le Bail, X. Adhoute, J. Bertet, P. Couzigou, and V. de Lédinghen, “Diagnosis of cirrhosis by transient elastography (FibroScan): a prospective study,” Gut 55(3), 403–408 (2006). [CrossRef]
  10. S. A. Kruse, G. H. Rose, K. J. Glaser, A. Manduca, J. P. Felmlee, C. R. Jack, and R. L. Ehman, “Magnetic resonance elastography of the brain,” Neuroimage 39(1), 231–237 (2008). [CrossRef]
  11. C. L. de Korte, G. Pasterkamp, A. F. W. van der Steen, H. A. Woutman, and N. Bom, “Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro,” Circulation 102(6), 617–623 (2000). [PubMed]
  12. J. M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express 3(6), 199–211 (1998). [CrossRef] [PubMed]
  13. R. C. Chan, A. H. Chau, W. C. Karl, S. Nadkarni, A. S. Khalil, N. Iftimia, M. Shishkov, G. J. Tearney, M. R. Kaazempur-Mofrad, and B. E. Bouma, “OCT-based arterial elastography: robust estimation exploiting tissue biomechanics,” Opt. Express 12(19), 4558–4572 (2004). [CrossRef] [PubMed]
  14. J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart 90(5), 556–562 (2004). [CrossRef] [PubMed]
  15. H. J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng. 12(1), 63–73 (2006). [CrossRef] [PubMed]
  16. R. K. Wang, Z. H. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006). [CrossRef]
  17. S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14(24), 11585–11597 (2006). [CrossRef] [PubMed]
  18. X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express 16(15), 11052–11065 (2008). [CrossRef] [PubMed]
  19. S. G. Adie, B. F. Kennedy, J. J. Armstrong, S. A. Alexandrov, and D. D. Sampson, “Audio frequency in vivo optical coherence elastography,” Phys. Med. Biol. 54(10), 3129–3139 (2009). [CrossRef] [PubMed]
  20. B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express 17(24), 21762–21772 (2009). [CrossRef] [PubMed]
  21. X. Liang and S. A. Boppart, “Biomechanical properties of in vivo human skin from dynamic optical coherence elastography,” IEEE Trans. Biomed. Eng. 57(4), 953–959 (2010). [CrossRef]
  22. X. Liang, S. G. Adie, R. John, and S. A. Boppart, “Dynamic spectral-domain optical coherence elastography for tissue characterization,” Opt. Express 18(13), 14183–14190 (2010). [CrossRef] [PubMed]
  23. S. G. Adie, X. Liang, B. F. Kennedy, R. John, D. D. Sampson, and S. A. Boppart, “Spectroscopic optical coherence elastography,” Opt. Express 18(25), 25519–25534 (2010). [CrossRef] [PubMed]
  24. R. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11(23), 3116–3121 (2003). [CrossRef] [PubMed]
  25. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003). [CrossRef] [PubMed]
  26. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003). [CrossRef] [PubMed]
  27. M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by high-speed spectral optical coherence tomography,” Opt. Lett. 28(19), 1745–1747 (2003). [CrossRef] [PubMed]
  28. N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12(3), 367–376 (2004). [CrossRef] [PubMed]
  29. T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 (1998).
  30. B. H. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm,” Opt. Express 13(11), 3931–3944 (2005). [CrossRef] [PubMed]
  31. J. D’hooge, A. Heimdal, F. Jamal, T. Kukulski, B. Bijnens, F. Rademakers, L. Hatle, P. Suetens, and G. R. Sutherland, “Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations,” Eur. J. Echocardiogr. 1(3), 154–170 (2000). [CrossRef]
  32. T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40(2), 85–94 (2005). [CrossRef] [PubMed]
  33. H. Fruhstorfer, U. Abel, C.-D. Garthe, and A. Knüttel, “Thickness of the stratum corneum of the volar fingertips,” Clin. Anat. 13(6), 429–433 (2000). [CrossRef] [PubMed]
  34. “Fiji is just ImageJ,” http://pacific.mpi-cbg.de/wiki/index.php/ .
  35. S. I. O’Donoghue, A.-C. Gavin, N. Gehlenborg, D. S. Goodsell, J.-K. Heriche, C. B. Nielsen, C. North, A. J. Olson, J. B. Procter, D. W. Shattuck, T. Walter, and B. Wong, “Visualizing biological data-now and in the future,” Nat. Methods 7(3), S1–S4 (2010). [CrossRef]
  36. A. Limaye, “Drishti-volume exploration and presentation tool,” IEEE Visual., Baltimore, USA (2006).
  37. R. O. Potts and D. A. Chrisman, Jr., andE. M. Buras, Jr., “The dynamic mechanical properties of human skin in vivo,” J. Biomech. 16(6), 365–372 (1983). [CrossRef] [PubMed]
  38. A. Gabrielli, E. V. Avvedimento, and T. Krieg, “Scleroderma,” N. Engl. J. Med. 360(19), 1989–2003 (2009). [CrossRef] [PubMed]
  39. J. De Rigal and J. L. Leveque, “In vivo measurement of the stratum corneum elasticity,” Bioeng. Skin 1, 13–23 (1985).
  40. F. M. Hendriks, D. Brokken, C. W. J. Oomens, and F. P. T. Baaijens, “Influence of hydration and experimental length scale on the mechanical response of human skin in vivo, using optical coherence tomography,” Skin Res. Technol. 10(4), 231–241 (2004). [CrossRef] [PubMed]
  41. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006). [CrossRef] [PubMed]
  42. A. Szkulmowska, M. Szkulmowski, A. Kowalczyk, and M. Wojtkowski, “Phase-resolved Doppler optical coherence tomography--limitations and improvements,” Opt. Lett. 33(13), 1425–1427 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited