OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 19, Iss. 7 — Mar. 28, 2011
  • pp: 6724–6740

Polarization-entangled photon pairs from a periodically poled crystalline waveguide

Zachary H. Levine, Jingyun Fan, Jun Chen, and Alan L. Migdall  »View Author Affiliations

Optics Express, Vol. 19, Issue 7, pp. 6724-6740 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1016 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A proposal is made for the generation of polarization-entangled photon pairs from a periodically poled crystal allowing for high collection efficiency, high entanglement, and stable operation. The theory is formulated for colinear propagation for application to waveguides. The key feature of the theory is the use of type II phase matching using both the +1 and −1 diffraction orders of the poling structure. Although these conditions are fairly restrictive in terms of operating parameters, practical operating conditions can be found. For example, we find that a HeNe pump laser may be used for a periodically poled rubidium-doped potassium titanyl phosphate (Rb:KTP) waveguide to yield single mode polarization-entangled pairs. Fidelities of 0.98 are possible under practical conditions.

© 2011 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(270.1670) Quantum optics : Coherent optical effects
(190.4975) Nonlinear optics : Parametric processes

ToC Category:
Quantum Optics

Original Manuscript: January 13, 2011
Manuscript Accepted: February 27, 2011
Published: March 24, 2011

Zachary H. Levine, Jingyun Fan, Jun Chen, and Alan L. Migdall, "Polarization-entangled photon pairs from a periodically poled crystalline waveguide," Opt. Express 19, 6724-6740 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J.-W. Pan, D. Bouwmeester, M. Daniell, H. Wienfurter, and A. Zellinger, “Experimental test of quantum nonlocality in three-photon greenberger-horne-zelinger entanglement,” Nature 403, 515–519 (2000). [CrossRef] [PubMed]
  2. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Wienfurter, and A. Zellinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997). [CrossRef]
  3. M. P. Peloso, I. Gerhardt, C. Ho, A. Lamas-Linares, and C. Kurtsiefer, “Daylight operation of a free space, entanglement-based quantum key distribution system,” N. J. Phys. 11, 045007 (2009). [CrossRef]
  4. Z. Y. Ou and L. Mandel, “Violation of bell’s inequality and classical probability in a two-photon corrlelation experiment,” Phys. Rev. Lett. 61, 50–53 (1988). [CrossRef] [PubMed]
  5. P. G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995). [CrossRef] [PubMed]
  6. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, 773–776 (1999). [CrossRef]
  7. A. Rossi, G. Vallone, A. Chiuri, F. D. Martini, and P. Mataloni, “Multipath entanglement of two photons,” Phys. Rev. Lett. 102, 153902 (2009). [CrossRef] [PubMed]
  8. J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005). [CrossRef]
  9. T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization sagnac interferometer,” Phys. Rev. A 73, 012316 (2006). [CrossRef]
  10. R. W. Risk, “Fabrication and characterization of planar ion-exchanged ktiopo4 waveguides for frequency doubling,” Appl. Phys. Lett. 58, 19–21 (1991). [CrossRef]
  11. P. Baldi, P. Aschieri, S. Nouh, M. D. Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, “Modeling and experimental observation of parametric fluorescence in periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 31, 997–1008 (1995). [CrossRef]
  12. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: Tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992). [CrossRef]
  13. Technically, the cm are frequency-dependent, however, because their frequency dependence is scaled to the band gap of (3.6 eV for KTP) whereas that of β(ωs, ωi) is scaled to the width of phase matching. For practical crystal lengths L ≳ 10 mm, this width is 1 meV or less, so the cm may be treated as constants.
  14. J. Chen, A. J. Pearlmand, A. Ling, J. Fan, and A. Migdall, “A versitile waveguide source of photon pairs for chip-scale quantum information processing,” Opt. Express 17, 6727–6740 (2009). [CrossRef] [PubMed]
  15. R. Jozsa, “Fidelity for mixed quantum states,” J. Mod. Opt. 41, 2315–2323 (1994). [CrossRef]
  16. C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization entangles photons from a periodically poled ktiopo4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004). [CrossRef]
  17. M. Fiorentino, S. M. Spillane, R. G. Beausoleil, T. D. Roberts, P. Battle, and M. W. Munro, “Spontaneous parametric down-conversion in periodically poled ktp waveguides and bulk crystals,” Opt. Express 15, 7479–7488 (2007). [CrossRef] [PubMed]
  18. A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled csource of narrowband engtangled photons,” Opt. Express 15, 15377–15386 (2007). [CrossRef] [PubMed]
  19. T. Zhong, F. N. C. Wong, T. D. Roberts, and P. Battle, “High performance photon-pair source based on a fiber-coupled periodically poled ktiopo4 waveguide,” Opt. Express 17, 12019–12029 (2009). [CrossRef] [PubMed]
  20. M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-ii parametric down-conversion,” Phys. Rev. A 50, 5122–5133 (1994). [CrossRef] [PubMed]
  21. M. Katz, D. Eger, H. Kim, L. Jankovic, G. Stegeman, S. Carrasco, and L. Torner, “Second harmonic generation tuning curves in quasiphase-matched potassium titanyl phosphate with narrow, high-intensity beams,” J. Appl. Phys. 93, 8852–8861 (2003). [CrossRef]
  22. G. K. Samanta, S. C. Mathew, C. Canalias, V. Pasiskevicius, F. Laurell, and M. Ebrahim-Zadeh, “High-power, continuous-wave, second-harmonic generation at 532 nm in periodically poled ktiopo4,” Opt. Lett. 33, 2955–2957 (2008). [CrossRef] [PubMed]
  23. F. Torabi-Goudarzi and E. Riis, “Efficient cw high-power frequency doubling in periodically poled ktp,” Opt. Commun. 227, 389–403 (2003). [CrossRef]
  24. F. König and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled ktiopo4 with zero group-velocity mismatch,” Appl. Phys. Lett. 84, 1644–1646 (2004). [CrossRef]
  25. K. Frakin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled ktiopo4,” Appl. Phys. Lett. 74, 914–916 (1999). [CrossRef]
  26. L. K. Cheng, L. T. Cheng, J. Galperin, P. A. M. Hotsenpiller, and J. D. Bierlein, “Crystal-growth and characterization of ktiopo4 isomorphs from the self-fluxes,” J. Cryst. Growth 137, 107 (1994). [CrossRef]
  27. http://www.comsol.com . Mention of commercial products is for information only; it does not imply recommendation or endorsement by NIST.
  28. J. D. Bierlein, A. Ferretti, L. H. Brixner, and W. Y. Hsu, “Fabrication and characterization of optical waveguides in ktiopo4,” Appl. Phys. Lett. 50, 1216 (1987). [CrossRef]
  29. S. Emanueli and A. Arie, “Temperature-dependent dispersion equations for ktiopo4 and ktioaso4,” Appl. Opt. 42, 6661 (2003). [CrossRef] [PubMed]
  30. T. Mikami, T. Okamoto, and K. Kato, “Sellmeier and thermo-optic dispersion formulas for rbtiopo4,” Appl. Opt. 42, 6661 (2003). [CrossRef]
  31. S. L. Braunstein, A. Mann, and M. Revzen, “Maximal violation of bell inequalities for mixed states,” Phys. Ref. Lett. 68, 1992 (1992). [CrossRef]
  32. P. G. Kwiat, “Hyper-entangled states,” J. Mod. Opt. 44, 2173 (1997).
  33. R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17–19 (1964). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited