OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 19, Iss. 7 — Mar. 28, 2011
  • pp: 6749–6755

Integration of FTTH and GI-POF in-house networks based on injection locking and direct-detection techniques

Hsiao-Chun Peng, Hai-Han Lu, Chung-Yi Li, Heng-Sheng Su, and Chin-Tai Hsu  »View Author Affiliations

Optics Express, Vol. 19, Issue 7, pp. 6749-6755 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1028 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An integration of fiber-to-the-home (FTTH) and graded-index plastic optical fiber (GI-POF) in-house networks based on injection-locked vertical cavity surface emitting lasers (VCSELs) and direct-detection technique is proposed and experimentally demonstrated. Sufficient low bit error rate (BER) values were obtained over a combination of 20-km single-mode fiber (SMF) and 50-m GI-POF links. Signal qualities satisfy the worldwide interoperability for microwave access (WiMAX) requirement with data signals of 20Mbps/5.8GHz and 70Mbps/10GHz, respectively. Since our proposed network does not use sophisticated and expensive RF devices in premises, it reveals a prominent one with simpler and more economic advantages. Our proposed architecture is suitable for the SMF-based primary and GI-POF-based in-house networks.

© 2011 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(140.3520) Lasers and laser optics : Lasers, injection-locked
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 25, 2011
Revised Manuscript: March 1, 2011
Manuscript Accepted: March 15, 2011
Published: March 24, 2011

Hsiao-Chun Peng, Hai-Han Lu, Chung-Yi Li, Heng-Sheng Su, and Chin-Tai Hsu, "Integration of FTTH and GI-POF in-house networks based on injection locking and direct-detection techniques," Opt. Express 19, 6749-6755 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. S. Tsai, H. L. Ma, H. H. Lu, Y. P. Lin, H. Y. Chen, and S. C. Yan, “Bidirectional direct modulation CATV and phase remodulation radio-over-fiber transport systems,” Opt. Express 18(25), 26077–26083 (2010). [CrossRef] [PubMed]
  2. C. H. Chang, P. C. Peng, H. H. Lu, C. L. Shih, and H. W. Chen, “Simplified radio-over-fiber transport systems with a low-cost multiband light source,” Opt. Lett. 35(23), 4021–4023 (2010). [CrossRef] [PubMed]
  3. C. H. Chang, H. H. Lu, H. S. Su, C. L. Shih, and K. J. Chen, “A broadband ASE light source-based full-duplex FTTX/ROF transport system,” Opt. Express 17(24), 22246–22253 (2009). [CrossRef] [PubMed]
  4. A. Polley, P. J. Decker, J. H. Kim, and S. E. Ralph, “Plastic optical fiber links: a statistical study,” presented at Opt. Fiber Commun (OFC), San Diego, CA, USA, (2009).
  5. A. Polley, P. J. Decker, and S. E. Ralph, “10 Gb/s, 850 nm VCSEL based large core POF links,” presented at Conf. on Lasers and Electro-Optics (CLEO), San Jose, California, (2008).
  6. H. Yang, S. C. Lee, E. Tangdiongga, F. Breyer, S. Randel, and A. M. J. Koonen, “40-Gb/s transmission over 100m graded-index plastic optical fiber based on discrete multitone modulation,” Opt. Fiber. Commun. (OFC) PDPD8 (2009).
  7. J. Yu, D. Qian, M. Huang, Z. Jia, G. K. Chang, and T. Wang, “16Gbit/s radio OFDM signals over graded-index plastic optical fiber,” European. Conf. on Opt. Commun. (ECOC) 5–237, 6.16 (2008).
  8. M. Asai, R. Hirose, A. Kondo, and Y. Koike, ““High-bandwidth graded-index plastic optical fiber by the dopant diffusion coextrusion process,” IEEE/OSA J. Lightw. Technol. 25(10), 3062–3067 (2007). [CrossRef]
  9. Y. Song, X. Zheng, W. Wang, H. Zhang, and B. Zhou, “All-optical broadband phase modulation of a subcarrier in a radio over fiber system,” Opt. Lett. 31(22), 3234–3236 (2006). [CrossRef] [PubMed]
  10. A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003). [CrossRef]
  11. C. H. Chang, L. Chrostowski, C. J. Chang-Hasnain, and W. W. Chow, “Study of long-wavelength VCSEl-VCSEL injection locking for 2.5-Gb/s transmission,” IEEE Photon. Technol. Lett. 14(11), 1635–1637 (2002). [CrossRef]
  12. H. K. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 19(13), 1005–1007 (2007). [CrossRef]
  13. H. S. Ryu, Y. K. Seo, and W. Y. Choi, “Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode,” IEEE Photon. Technol. Lett. 16(8), 1942–1944 (2004). [CrossRef]
  14. H. J. R. Dutton, Understanding Optical Communications (Prentice Hall PTR, 1998) pp. 61–62.
  15. A. M. J. Koonen, A. Ng’oma, M. G. Larrode, F. M. Huijskens, I. T. Monroy, and G. D. Khoe, “Novel cost-efficient techniques for microwave signal delivery in fibre-wireless networks,” European. Conf. on Opt. Commun. (ECOC) 1, 1.1 (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited