OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 19, Iss. 7 — Mar. 28, 2011
  • pp: 6938–6944

1.6 W continuous-wave Raman laser using low-loss synthetic diamond

Walter Lubeigt, Vasili G. Savitski, Gerald M. Bonner, Sarah L. Geoghegan, Ian Friel, Jennifer E. Hastie, Martin D. Dawson, David Burns, and Alan J. Kemp  »View Author Affiliations


Optics Express, Vol. 19, Issue 7, pp. 6938-6944 (2011)
http://dx.doi.org/10.1364/OE.19.006938


View Full Text Article

Enhanced HTML    Acrobat PDF (1112 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Low-birefringence (Δn<2x10−6), low-loss (absorption coefficient <0.006cm−1 at 1064nm), single-crystal, synthetic diamond has been exploited in a CW Raman laser. The diamond Raman laser was intracavity pumped within a Nd:YVO4 laser. At the Raman laser wavelength of 1240nm, CW output powers of 1.6W and a slope efficiency with respect to the absorbed diode-laser pump power (at 808nm) of ~18% were measured. In quasi-CW operation, maximum on-time output powers of 2.8W (slope efficiency ~24%) were observed, resulting in an absorbed diode-laser pump power to the Raman laser output power conversion efficiency of 13%.

© 2011 OSA

OCIS Codes
(140.3550) Lasers and laser optics : Lasers, Raman
(140.3580) Lasers and laser optics : Lasers, solid-state
(160.4670) Materials : Optical materials

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 20, 2011
Revised Manuscript: March 11, 2011
Manuscript Accepted: March 13, 2011
Published: March 25, 2011

Citation
Walter Lubeigt, Vasili G. Savitski, Gerald M. Bonner, Sarah L. Geoghegan, Ian Friel, Jennifer E. Hastie, Martin D. Dawson, David Burns, and Alan J. Kemp, "1.6 W continuous-wave Raman laser using low-loss synthetic diamond," Opt. Express 19, 6938-6944 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-7-6938


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Cerný, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004). [CrossRef]
  2. J. Piper and H. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007). [CrossRef]
  3. R. P. Mildren and A. Sabella, “Highly efficient diamond Raman laser,” Opt. Lett. 34(18), 2811–2813 (2009). [CrossRef] [PubMed]
  4. D. J. Spence, E. Granados, and R. P. Mildren, “Mode-locked picosecond diamond Raman laser,” Opt. Lett. 35(4), 556–558 (2010). [CrossRef] [PubMed]
  5. A. Sabella, J. A. Piper, and R. P. Mildren, “1240 nm diamond Raman laser operating near the quantum limit,” Opt. Lett. 35(23), 3874–3876 (2010). [CrossRef] [PubMed]
  6. J. P. M. Feve, K. E. Shortoff, M. J. Bohn, and J. K. Brasseur, “High average power diamond Raman laser,” Opt. Express 19(2), 913–922 (2011). [CrossRef] [PubMed]
  7. A. A. Demidovich, A. S. Grabtchikov, V. A. Orlovich, M. B. Danailov, and W. Kiefer, “Diode pumped diamond Raman microchip laser,” in 2005 Conference on Lasers and Electro-Optics Europe, (Munich, 2005), p. 251.
  8. W. Lubeigt, G. M. Bonner, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “An intra-cavity Raman laser using synthetic single-crystal diamond,” Opt. Express 18(16), 16765–16770 (2010). [CrossRef] [PubMed]
  9. W. Lubeigt, G. M. Bonner, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Continuous-wave diamond Raman laser,” Opt. Lett. 35(17), 2994–2996 (2010). [CrossRef] [PubMed]
  10. P. M. Martineau, M. P. Gaukroger, K. B. Guy, S. C. Lawson, D. J. Twitchen, I. Friel, J. O. Hansen, G. C. Summerton, T. P. G. Addison, and R. Burns, “High crystalline quality single crystal chemical vapour deposition diamond,” J. Phys. Condens. Matter 21(36), 364205 (2009). [CrossRef] [PubMed]
  11. R. S. Balmer, J. R. Brandon, S. L. Clewes, H. K. Dhillon, J. M. Dodson, I. Friel, P. N. Inglis, T. D. Madgwick, M. L. Markham, T. P. Mollart, N. Perkins, G. A. Scarsbrook, D. J. Twitchen, A. J. Whitehead, J. J. Wilman, and S. M. Woollard, “Chemical vapour deposition synthetic diamond: materials, technology and applications,” J. Phys. Condens. Matter 21(36), 364221 (2009). [CrossRef] [PubMed]
  12. H. Jelinkova, O. Kitzler, V. Kubecek, M. Jelinek, M. Cech, J. Sulc, and M. Nemec, “Single pass SRS threshold and gain from diamond under 532nm picoseconds Nd:YAG pulse pumping,” WeP14, Europhoton 2010, European Physical Society, Mulhouse, France (2010).
  13. A. A. Kaminskii, R. J. Hemley, J. Lai, C. S. Yan, H. K. Mao, V. G. Ralchenko, H. J. Eichler, and H. Rhee, “High-order stimulated Raman scattering in CVD single crystal diamond,” Laser Phys. Lett. 4(5), 350–353 (2007). [CrossRef]
  14. A. A. Kaminskii, V. G. Ralchenko, and V. I. Konov, “CVD-diamond – a novel χ(3)-nonlinear active crystalline material for SRS generation in very wide spectral range,” Laser Phys. Lett. 3(4), 171–177 (2006). [CrossRef]
  15. H. Herchen and M. A. Cappelli, “First-order Raman spectrum of diamond at high temperatures,” Phys. Rev. B Condens. Matter 43(14), 11740–11744 (1991). [CrossRef] [PubMed]
  16. D. Nikogosyan, Handbook of Properties of Optical Materials (John Wiley and Sons Ltd., 1997).
  17. P. Millar, R. B. Birch, A. J. Kemp, and D. Burns, “Synthetic diamond for intracavity thermal management in compact solid-state lasers,” IEEE J. Quantum Electron. 44(8), 709–717 (2008). [CrossRef]
  18. I. Friel, S. L. Clewes, H. K. Dhillon, N. Perkins, D. J. Twitchen, and G. A. Scarsbrook, “Control of surface and bulk crystalline quality in single crystal diamond grown by chemical vapour deposition,” Diamond Related Materials 18(5-8), 808–815 (2009). [CrossRef]
  19. A. M. Glazer, J. G. Lewis, and W. Kaminsky, “An automatic optical imaging system for birefringent media,” Proc. R. Soc. Lond. A 452(1955), 2751–2765 (1996). [CrossRef]
  20. P. M. Martineau, S. C. Lawson, A. J. Taylor, S. J. Quinn, D. J. F. Evans, and M. J. Crowder, “Identification of synthetic diamond grown using chemical vapor deposition,” Gems Gemol. 40, 2–25 (2004). [CrossRef]
  21. M. E. Newton, “Neutral and ionized single substitutional nitrogen in diamond,” in Properties, Growth and Applications of Diamond, M. H. Nazare and A. J. T. Neves, eds., (Institution of Engineering and Technology, 2001).
  22. ISO 11551:2003, “Test method for absorptance of optical laser components.”
  23. G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor deposited diamond at 1.064um,” Opt. Eng. 46(6), 064002 (2007). [CrossRef]
  24. Z. L. Liau, “Semiconductor wafer bonding via liquid capillarity,” Appl. Phys. Lett. 77(5), 651–653 (2000). [CrossRef]
  25. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited