OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 8 — Apr. 11, 2011
  • pp: 7034–7061

Optical detection of target molecule induced aggregation of nanoparticles by means of high-Q resonators

Jeremy Witzens and Michael Hochberg  »View Author Affiliations


Optics Express, Vol. 19, Issue 8, pp. 7034-7061 (2011)
http://dx.doi.org/10.1364/OE.19.007034


View Full Text Article

Enhanced HTML    Acrobat PDF (1553 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically investigate a novel scheme to detect target molecule induced, or suppressed, aggregation of nanoparticles. High-Q optical resonators are used to both optically trap gold nanoparticle clusters and to detect their presence via a shift in the resonance wavelength. The well depth of the optical trap is chosen to be relatively low compared to the thermal energy of the nanoparticles, so that trapping of single nanoparticles is marginal and results in a comparatively small wavelength shift. Aggregation of functionalized gold nanoparticles is mediated or suppressed via binding to a target molecule. The well depth for the resulting nanoparticle clusters scales much more favorably relative to Brownian motion, resulting in large nanoparticle concentration enhancements in the evanescent field region of the resonator. We predict a target molecule sensitivity in the tens of fM range. In order to predict the resonator response, a complete theory of time resolved nanoparticle cluster trapping dynamics is derived. In particular, the formalism of Kramers’ escape time is adapted to 2D (silicon wire) and 3D (ring resonator) optical traps.

© 2011 OSA

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: December 22, 2010
Revised Manuscript: March 1, 2011
Manuscript Accepted: March 1, 2011
Published: March 29, 2011

Virtual Issues
Vol. 6, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Jeremy Witzens and Michael Hochberg, "Optical detection of target molecule induced aggregation of nanoparticles by means of high-Q resonators," Opt. Express 19, 7034-7061 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-8-7034


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. G. Gordon and S. Ernst, “Surface plasmons as a probe of the electrochemical interface,” Surf. Sci. 101(1-3), 499–506 (1980). [CrossRef]
  2. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators 54(1-2), 3–15 (1999). [CrossRef]
  3. F. Mitschke, “Fiber-optic sensor for humidity,” Opt. Lett. 14(17), 967–969 (1989). [CrossRef] [PubMed]
  4. G. Mitchell, “A review of Fabry-Perot interferometer sensors,” Proc. Phys. 44, 450–457 (1989).
  5. R. W. Boyd and J. E. Heebner, “Sensitive disk resonator photonic biosensor,” Appl. Opt. 40(31), 5742–5747 (2001). [CrossRef]
  6. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003). [CrossRef] [PubMed]
  7. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultra-compact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29(10), 1093–1095 (2004). [CrossRef] [PubMed]
  8. A. Ksendzov and Y. Lin, “Integrated optics ring-resonator sensors for protein detection,” Opt. Lett. 30(24), 3344–3346 (2005). [CrossRef]
  9. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007). [CrossRef] [PubMed]
  10. K. D. Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007). [CrossRef] [PubMed]
  11. M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010). [CrossRef]
  12. R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science 277(5329), 1078–1081 (1997). [CrossRef] [PubMed]
  13. J. J. Storhoff, A. D. Lucas, G. Viswanadham, Y. P. Bao, and U. R. Müller, “Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes,” Nat. Biotechnol. 22(7), 883–887 (2004). [CrossRef] [PubMed]
  14. J. I. L. Chen, Y. Chen, and D. S. Ginger, “Plasmonic nanoparticle dimers for optical sensing of DNA in complex media,” J. Am. Chem. Soc. 132(28), 9600–9601 (2010). [CrossRef] [PubMed]
  15. F. Xia, X. Zuo, R. Yang, Y. Xiao, D. Kang, A. Vallée-Bélisle, X. Gong, J. D. Yuen, B. Y.H. Ben, A. J. Heeger, and K. W. Plaxco, “Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes,” Proc. Natl. Acad. Sci. U.S.A. 107(24), 10837–10841 (2010). [CrossRef] [PubMed]
  16. D. Aili, R. Selegárd, L. Baltzer, K. Enander, and B. Liedberg, “Colorimetric protein sensing by controlled assembly of gold nanoparticles functionalized with synthetic receptors,” Small 5(21), 2445–2452 (2009). [CrossRef] [PubMed]
  17. Y. N. Tan, X. Su, E. T. Liu, and J. S. Thomsen, “Gold-nanoparticle-based assay for instantaneous detection of nuclear hormone receptor-response elements interactions,” Anal. Chem. 82(7), 2759–2765 (2010). [CrossRef] [PubMed]
  18. J.-S. Lee, M. S. Han, and C. A. Mirkin, “Colorimetric Detection of Mercuric Ion (Hg2+) in Aqueous Media using DNA-Functionalized Gold Nanoparticles,” Angew. Chem. 119(22), 4171–4174 (2007). [CrossRef]
  19. F. Chai, C. Wang, T. Wang, L. Li, and Z. Su, “Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles,” ACS Appl Mater Interfaces 2(5), 1466–1470 (2010). [CrossRef] [PubMed]
  20. S. O. Obare, R. E. Hollowell, and C. J. Murphy, “Sensing Strategy for Lithium Ion Based on Gold Nanoparticles,” Langmuir 18(26), 10407–10410 (2002). [CrossRef]
  21. K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19(13), 930–932 (1994). [CrossRef] [PubMed]
  22. P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005). [CrossRef] [PubMed]
  23. M. Pelton, M. Liu, H. Y. Kim, S. Glenna, P. Guyot-Sionnest, and N. F. Scherer, “Optical trapping and alignment of single gold nanorods using plasmon resonances,” Proc. SPIE 6323, 63230E 1–9 (2006).
  24. L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, “Propulsion of gold nanoparticles on optical waveguides,” Opt. Commun. 208(1-3), 117–124 (2002). [CrossRef]
  25. Y. Seol, A. E. Carpenter, and T. T. Perkins, “Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating,” Opt. Lett. 31(16), 2429–2431 (2006). [CrossRef] [PubMed]
  26. T. J. Davis, “Brownian diffusion of nano-particles in optical traps,” Opt. Express 15(5), 2702–2712 (2007). [CrossRef] [PubMed]
  27. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009). [CrossRef] [PubMed]
  28. T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86(8), 081101 1-3 (2005). [CrossRef]
  29. J. M. Choi, R. K. Lee, and A. Yariv, “Control of critical coupling in a ring resonator-fiber configuration: application to wavelength-selective switching, modulation, amplification, and oscillation,” Opt. Lett. 26(16), 1236–1238 (2001). [CrossRef]
  30. H. A. Kramers, “Brownian motion in a field of force and the diffusion model of chemical reactions,” Physica 7(4), 284–304 (1940). [CrossRef]
  31. S. Ke, J. C. Wright, and G. S. Kwon, “Intermolecular interaction of avidin and PEGylated biotin,” Bioconjug. Chem. 18(6), 2109–2114 (2007). [CrossRef] [PubMed]
  32. C. Tropini and A. Marziali, “Multi-nanopore force spectroscopy for DNA analysis,” Biophys. J. 92(5), 1632–1637 (2007). [CrossRef]
  33. D. W. Lynch and W. R. Hunter, Handbook of Optical Constants of Solids, ed. Palik, E., Academic Press, Orlando, FL, 286–295 (1985).
  34. N. J. Lynch, P. K. Kilpatrick, and R. G. Carbonell, “Aggregation of ligand-modified liposomes by specific interactions with proteins. I: Biotinylated liposomes and avidin,” Biotechnol. Bioeng. 50(2), 151–168 (1996). [CrossRef] [PubMed]
  35. S. Y. Park, J.-S. Lee, D. Georganopoulou, C. A. Mirkin, and G. C. Schatz, “Structures of DNA-linked nanoparticle aggregates,” J. Phys. Chem. B 110(25), 12673–12681 (2006). [CrossRef] [PubMed]
  36. C. R. Snyder and J. F. J. Douglas, “Determination of the Dielectric Constant of Nanoparticles. 1. Dielectric Measurements of Buckminsterfullerene Solutions,” Phys. Chem. B 104(47), 11058–11065 (2000). [CrossRef]
  37. J. Witzens, T. Baehr-Jones, and M. Hochberg, “Design of transmission line driven slot waveguide Mach-Zehnder interferometers and application to analog optical links,” Opt. Express 18(16), 16902–16928 (2010). [CrossRef] [PubMed]
  38. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI Photonic Wires and Ring Resonators Fabricated with Deep UV Lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited