OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 8 — Apr. 11, 2011
  • pp: 7127–7138

Effective upwelling irradiance depths in turbid waters: a spectral analysis of origins and fate

Ronghua Ma, Guangjia Jiang, Hongtao Duan, Luca Bracchini, and Steven Loiselle  »View Author Affiliations


Optics Express, Vol. 19, Issue 8, pp. 7127-7138 (2011)
http://dx.doi.org/10.1364/OE.19.007127


View Full Text Article

Enhanced HTML    Acrobat PDF (1199 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The spectral distribution of upwelling and downwelling irradiance were used to estimate the effective upwelling irradiance depth as well as examine the angular distribution of the downwelling radiance. The effective upwelling depth was seen to undergo spectral “shifts” in wavelength maxima in relation to elevated particulate concentrations. Wavelengths of the UVA minimum and mid visible maximum depths were found to be shifted to higher wavelengths (red shifted) at high particulate concentrations, while expected minimums at chlorophyll and phycocyanin absorption peaks and in the NIR were shifted to lower wavelengths (blue shifted). By comparing upwelling and downwelling irradiance profiles, the wavelength limits of the asymptotic angular radiance distribution were found to correspond to the visible spectral domain (390 – 740 nm).

© 2011 OSA

OCIS Codes
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(010.5620) Atmospheric and oceanic optics : Radiative transfer

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: January 25, 2011
Revised Manuscript: February 28, 2011
Manuscript Accepted: March 8, 2011
Published: March 30, 2011

Virtual Issues
Vol. 6, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Ronghua Ma, Guangjia Jiang, Hongtao Duan, Luca Bracchini, and Steven Loiselle, "Effective upwelling irradiance depths in turbid waters: a spectral analysis of origins and fate," Opt. Express 19, 7127-7138 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-8-7127


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. G. Bowers, D. Evans, and D. N. Thomas, “Interpreting the colour of an estuary,” Estuar. Coast. Shelf Sci. 59(1), 13–20 (2004). [CrossRef]
  2. N. G. Jerlov, Marine optics, 2nd ed. Elsevier (1976).
  3. N. K. Hojerslev, “Inherent and apparent optical properties of the Baltic. Report no.23,” Institute of Physical Oceanography,University of Copenhagen (1977).
  4. J. L. Mueller, and R. W. Austin, “Ocean Optics Protocols for SeaWiFS Validation, revision 1” (Maryland: Goddard Space Flight Center) (1995).
  5. A. Islam, J. Gao, and W. Ahmad, “A composite DOP approach to excluding bottom reflectance in mapping water parameters of shallow coastal zones from TM imagery,” Remote Sens. Environ. 92(1), 40–51 (2004). [CrossRef]
  6. Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, J. S. Patch, and B. Gentili, “Hyperspectral remote sensing for shallow waters. I. A semianalytical model,” Appl. Opt. 37(27), 6329–6338 (1998). [CrossRef]
  7. C. H. Chang, C.-C. Liu, and C. G. Wen, “Integrating semianalytical and genetic algorithms to retrieve the constituents of water bodies from remote sensing of ocean color,” Opt. Express 15(2), 252–265 (2007). [CrossRef] [PubMed]
  8. R. W. Preisendorfer, Application of radiative transfer theory to light measurements in the sea,” International Union of Geodesy and Geophysics Monographs (1961).
  9. H. R. Gordon, and A. Y. Morel, Remote assessment of ocean colour for interpretation of satellite visible imagery: a review in M. Bowman (Ed.), Lecture Notes on Coastal and Estuarine Studies (pp. 1–114), Springer-Verlag, New York, NY (1983).
  10. L. Bracchini, A. M. Dattilo, V. Hull, S. A. Loiselle, A. Tognazzi, and C. Rossi, “Modelling Upwelling Irradiance using Secchi disk depth in lake ecosystems,” J. Limnol. 68, 83–91 (2009).
  11. J. M. Sullivan and M. S. Twardowski, “Angular shape of the oceanic particulate volume scattering function in the backward direction,” Appl. Opt. 48(35), 6811–6819 (2009). [CrossRef] [PubMed]
  12. J. T. O. Kirk, “The Upwelling Light Stream in Natural Waters,” Limnol. Oceanogr. 34(8), 1410–1425 (1989). [CrossRef]
  13. B. Q. Qin, Lake Taihu, China: Dynamics and Environmental Change, (Springer, Netherlands 2008).
  14. R. Ma, H. Duan, X. Gu, and S. Zhang, “Detecting aquatic vegetation changes in Taihu Lake, China using multi-temporal satellite imagery,” Sensors 8(6), 3988–4005 (2008). [CrossRef]
  15. L. Guo, “Ecology. Doing battle with the green monster of Taihu Lake,” Science 317(5842), 1166 (2007). [CrossRef] [PubMed]
  16. H. Duan, R. Ma, X. Xu, F. Kong, S. Zhang, W. Kong, J. Hao, and L. Shang, “Two-decade reconstruction of algal blooms in China’s Lake Taihu,” Environ. Sci. Technol. 43(10), 3522–3528 (2009). [CrossRef] [PubMed]
  17. T. Ohde and H. Siegel, “Correction of bottom influence in ocean colour satellite images of shallow water areas of the Baltic Sea,” Int. J. Remote Sens. 22(2), 297–313 (2001). [CrossRef]
  18. J. D. Strickland, and T. R. Parsons, “A practical handbook of seawater analysis,” Fishery Research Board, Canada (1972).
  19. R. Yan, F. Kong, and X. Han, “Analysis of the recruitment of the winter survival algae on the sediments of Lake Taihu by fluorometry,” J. Lake. Sci. 16, 163–168(in Chinese with English abstract) (2004).
  20. J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Cambridge Press, Cambridge 1994).
  21. R. A. Maffione, “Theoretical developments on the optical properties of highly turbid waters and sea ice,” Limnol. Oceanogr. 43(1), 29–33 (1998). [CrossRef]
  22. M. Chami, D. McKee, E. Leymarie, and G. Khomenko, “Influence of the angular shape of the volume-scattering function and multiple scattering on remote sensing reflectance,” Appl. Opt. 45(36), 9210–9220 (2006). [CrossRef] [PubMed]
  23. M. Tedetti, B. Charriere, A. Bricaud, J. Para, P. Raimbault, and R. Sempéré, “Distribution of normalized water- leaving radiances at UV and visible wave bands in relation with chlorophyll a and colored detrital matter content in the southeast Pacific,” J. Geophys. Res. 115(C2), C02010 (2010). [CrossRef]
  24. M. M. Squires, L. F. W. Lesack, and D. Huebert, “The influence of water transparency on the distribution and abundance of macrophytes among lakes of the Mackenzie Delta, Western Canadian Arctic,” Freshw. Biol. 47(11), 2123–2135 (2002). [CrossRef]
  25. R. Ma, J. Tang, and J. Dai, “Bio-optical model with optimal parameter suitable for Taihu Lake in water colour remote sensing,” Int. J. Remote Sens. 27(19), 4305–4328 (2006). [CrossRef]
  26. B. J. Topliss, “Spectral variations in upwelling radiant intensity in turbid coastal waters,” Estuar. Coast. Shelf Sci. 22(4), 395–414 (1986). [CrossRef]
  27. N. Bergamino, S. Horion, S. Stenuite, Y. Cornet, S. Loiselle, P. D. Plisnier, and J. P. Descy, “Spatio-temporal dynamics of phytoplankton and primary production in Lake Tanganyika using a MODIS based bio-optical time series,” Remote Sens. Environ. 114(4), 772–780 (2010). [CrossRef]
  28. A. E. Hickman, S. Dutkiewicz, R. G. Williams, and M. J. Follows, “Modelling the effects of chromatic adaptation on phytoplankton community structure in the oligotrophic ocean,” Mar. Ecol. Prog. Ser. 406, 1–17 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited