OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 8 — Apr. 11, 2011
  • pp: 7244–7261

Interaction of highly focused vector beams with a metal knife-edge

P. Marchenko, S. Orlov, C. Huber, P. Banzer, S. Quabis, U. Peschel, and G. Leuchs  »View Author Affiliations


Optics Express, Vol. 19, Issue 8, pp. 7244-7261 (2011)
http://dx.doi.org/10.1364/OE.19.007244


View Full Text Article

Enhanced HTML    Acrobat PDF (2445 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the interaction of highly focused linearly polarized optical beams with a metal knife-edge both theoretically and experimentally. A high numerical aperture objective focusses beams of various wavelengths onto samples of different sub-wavelength thicknesses made of several opaque and pure materials. The standard evaluation of the experimental data shows material and sample dependent spatial shifts of the reconstructed intensity distribution, where the orientation of the electric field with respect to the edge plays an important role. A deeper understanding of the interaction between the knife-edge and the incoming highly focused beam is gained in our theoretical model by considering eigenmodes of the metal-insulator-metal structure. We achieve good qualitative agreement of our numerical simulations with the experimental findings.

© 2011 OSA

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(240.6680) Optics at surfaces : Surface plasmons
(260.5430) Physical optics : Polarization
(140.3295) Lasers and laser optics : Laser beam characterization
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

History
Original Manuscript: January 27, 2011
Revised Manuscript: March 10, 2011
Manuscript Accepted: March 13, 2011
Published: March 31, 2011

Citation
P. Marchenko, S. Orlov, C. Huber, P. Banzer, S. Quabis, U. Peschel, and G. Leuchs, "Interaction of highly focused vector beams with a metal knife-edge," Opt. Express 19, 7244-7261 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-8-7244


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000). [CrossRef]
  2. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical vector beams,” Opt. Express 7, 77–87 (2000). [CrossRef] [PubMed]
  3. R. Dorn, S. Quabis, and G. Leuchs, “The focus of light-linear polarization breaks the rotational symmetry of the focal spot,” J. Mod. Opt. 50, 1917–1926 (2003).
  4. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003). [CrossRef] [PubMed]
  5. G. Leuchs and S. Quabis, “Tailored polarization patterns for performance optimization of optical devices,” J. Mod. Opt. 53, 787–797 (2006). [CrossRef]
  6. J. A. Arnaud, W. M. Hubbard, G. D. Mandeville, B. de la Claviere, E. A. Franke, and J. M. Franke, “Technique for fast measurement of Gaussian laser beam parameters,” Appl. Opt. 10, 2775–2776 (1971). [PubMed]
  7. A. H. Firester, M. E. Heller, and P. Sheng, “Knife-edge scanning measurements of subwavelength focussed light beams,” Appl. Opt. 16, 1971–1974 (1977). [CrossRef] [PubMed]
  8. M. B. Schneider and W. W. Webb, “Measurement of submicron laser beam radii,” Appl. Opt. 20, 1382–1388 (1981). [CrossRef] [PubMed]
  9. R. L. McCally, “Measurement of Gaussian beam parameters,” Appl. Opt. 23, 2227–2227 (1984). [CrossRef] [PubMed]
  10. O. Mata-Mendez, “Diffraction and beam-diameter measurement of Gaussian beams at optical and microwave frequencies,” Opt. Lett. 16, 1629–1631 (1991). [CrossRef] [PubMed]
  11. J. M. Khosrofian and B. A. Garetz, “Measurement of a Gaussian laser beam diameter through the direct inversion of knife-edge data,” Appl. Opt. 22, 3406–3410 (1983). [CrossRef] [PubMed]
  12. G. Brost, P. D. Horn, and A. Abtahi, “Convenient spatial profiling of pulsed laser beams,” Appl. Opt. 24, 38–40 (1985). [CrossRef] [PubMed]
  13. H. R. Bilger and T. Habib, “Knife-edge scanning of an astigmatic Gaussian beam,” Appl. Opt. 24, 686–690 (1985). [CrossRef] [PubMed]
  14. M. A. de Araujo, R. Silva, E. de Lima, D. P. Pereira, and P. C. de Oliveira, “Measurement of Gaussian laser beam radius using the knife-edge technique: improvement on data analysis,” Appl. Opt. 48, 393–396 (2009).
  15. D. Karabacak, T. Kouh, C. C. Huang, and K. L. Ekinci, “Optical knife-edge technique for nanomechanical displacement detection,” Appl. Phys. Lett. 88, 193122 (2006).
  16. M. Gentili and N. A. Riza, “Wide-aperture no-moving-parts optical beam profiler using liquid-crystal displays,” Appl. Opt. 46, 506–512 (2007). [CrossRef] [PubMed]
  17. Y. Chiu and J.-H. Pan, “Micro knife-edge optical measurements device in a silicon-on-insulator substrate,” Opt. Express 15, 6367–6373 (2007). [CrossRef] [PubMed]
  18. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Transmission of light through periodic arrays of sub-wavelength slits in metallic hosts,” Opt. Express 14, 6400–6413 (2006). [CrossRef] [PubMed]
  19. O. Mata Mendez, M. Cadilhac, and R. Petit, “Diffraction of a two-dimensional electromagnetic beam wave by a thick slit pierced in a perfectly conducting screen,” J. Opt. Soc. Am. 73, 328–331 (1983). [CrossRef]
  20. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” Appl. Phys. 98, 011101 (2005). [CrossRef]
  21. B. Sturman, E. Podivilov, and M. Gorkunov, “Eigenmodes for metal-dielectric light-transmitting nanostructures,” Phys. Rev. B 76, 125104 (2007). [CrossRef]
  22. Ş. E. Kocabaş, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal wavequides,” Phys. Rev. B 79, 035120 (2009). [CrossRef]
  23. B. Richards and E. Wolf, “Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System,” Proc. R. Soc. A 253, 358 – 379 (1959). [CrossRef]
  24. A. E. Karbowiak, “Theory of imperfect waveguides: the effect of wall impedance,” Proc. IEEE Part B: Radio Electron. Engin. 102, 698 – 708 (1955).
  25. J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006). [CrossRef]
  26. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Approximate model for surface-plasmon generation at slit apertures,” J. Opt. Soc. Am. A 23, 1608–1615 (2006). [CrossRef]
  27. A. Roberts and R. C. McPhedran, “Power losses in highly conducting lamellar gratings,” J. Mod. Opt 34, 511–538 (1987). [CrossRef]
  28. J. Sumaya-Martinez, O. Mata-Mendez, and F. Chavez-Rivas, “Rigorous theory of the diffraction of Gaussian beams by finite gratings: TE polarization,” J. Opt. Soc. Am. A 20, 827–835 (2003). [CrossRef]
  29. O. Mata-Mendez, J. Avendano, and F. Chavez-Rivas, “Rigorous theory of the diffraction of Gaussian beams by finite gratings: TM polarization,” J. Opt. Soc. Am. A 23, 1889–1896 (2006). [CrossRef]
  30. M. J. Weber, Handbook of optical materials (CRC Press, 2003).
  31. Y. Z. Umul, “Scattering of a Gaussian beam by an impedance half-plane,” J. Opt. Soc. Am. A 243159–3167 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited