OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 8 — Apr. 11, 2011
  • pp: 7274–7279

Electric field enhancements around the nanorod on the base layer

Zhongyue Zhang, Zhidong Zhang, Lijie Zhang, Chengzhi Huang, and Zuhong Xiong  »View Author Affiliations


Optics Express, Vol. 19, Issue 8, pp. 7274-7279 (2011)
http://dx.doi.org/10.1364/OE.19.007274


View Full Text Article

Enhanced HTML    Acrobat PDF (761 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Electric field (E field) distributions of the silver rod-film nanostructures are calculated by the finite difference time domain method and compared with those of the individual nanorods. For the rod-film nanostructure, the incident waves are reflected back by the base layer and the superposition of the E fields of the incident wave and the reflection wave works as the excitation for the transverse mode electron oscillations in the nanorod, which results in the much enhanced E fields around the lateral surface of the nanorod. In addition, we investigate how the structural parameters of the rod-film nanostructure affect the E fields along the nanorod. These results would be much helpful for designing larger intensity surface enhanced Raman scattering substrates.

© 2011 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(240.6680) Optics at surfaces : Surface plasmons
(260.5740) Physical optics : Resonance

ToC Category:
Optics at Surfaces

History
Original Manuscript: March 8, 2011
Revised Manuscript: March 23, 2011
Manuscript Accepted: March 24, 2011
Published: March 31, 2011

Citation
Zhongyue Zhang, Zhidong Zhang, Lijie Zhang, Chengzhi Huang, and Zuhong Xiong, "Electric field enhancements around the nanorod on the base layer," Opt. Express 19, 7274-7279 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-8-7274


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Vo-Dinh, “Surface-enhanced Raman spectroscopy using metallic nanostructures,” Trends Analyt. Chem. 17(8-9), 557–582 (1998). [CrossRef]
  2. Z.-Q. Tian, B. Ren, and D.-Y. Wu, “Surface-enhanced Raman scattering: from noble to transition metals and from rough surface to ordered nanostructures,” J. Phys. Chem. B 106(37), 9463–9483 (2002). [CrossRef]
  3. A. Campion and P. Kambhampati, “Surface enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998). [CrossRef]
  4. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003). [CrossRef]
  5. Z.-Y. Zhang and Y.-P. Zhao, “Extinction spectra and electrical field enhancement of Ag nanorods with different topologic shapes,” J. Appl. Phys. 102(11), 113308 (2007). [CrossRef]
  6. J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003). [CrossRef]
  7. H.-Y. Lin, C.-H. Huang, C.-H. Chang, Y.-C. Lan, and H.-C. Chui, “Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs,” Opt. Express 18(1), 165–172 (2010). [CrossRef] [PubMed]
  8. S. Iyer, S. Popov, and A. T. Friberg, “Transmission resonances in periodic U-shaped metallic nanostructures,” Opt. Express 18(17), 17719–17728 (2010). [CrossRef] [PubMed]
  9. H.-C. Tseng and C.-W. Chang, “High displacement sensitivity in asymmetric plasmonic nanostructures,” Opt. Express 18(17), 18360–18367 (2010). [CrossRef] [PubMed]
  10. Z.-J. Yang, N.-C. Kim, J.-B. Li, M.-T. Cheng, S.-D. Liu, Z.-H. Hao, and Q.-Q. Wang, “Surface plasmons amplifications in single Ag nanoring,” Opt. Express 18(5), 4006–4011 (2010). [CrossRef] [PubMed]
  11. G. Xu, M. Tazawa, P. Jin, S. Nakao, and K. Yoshimura, “Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films,” Appl. Phys. Lett. 82(22), 3811–3813 (2003). [CrossRef]
  12. X.-M. Lin, Y. Cui, Y.-H. Xu, B. Ren, and Z.-Q. Tian, “Surface-enhanced Raman spectroscopy: substrate-related issues,” Anal. Bioanal. Chem. 394(7), 1729–1745 (2009). [CrossRef] [PubMed]
  13. S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y.-P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Appl. Phys. Lett. 87(3), 031908–031910 (2005). [CrossRef]
  14. Y.-J. Liu, J.-G. Fan, Y.-P. Zhao, S. Shanmukh, and R. A. Dluhy, “Angle dependent surface enhanced Raman scattering obtained from a Ag nanorod array substrate,” Appl. Phys. Lett. 89(17), 173134 (2006). [CrossRef]
  15. J. D. Driskell, S. Shanmukh, Y.-J. Liu, S. B. Chaney, X.-J. Tang, Y.-P. Zhao, and R. A. Dluhy, “The use of aligned silver nanorod arrays prepared by oblique angle deposition as surface enhanced Raman scattering substrates,” J. Phys. Chem. C 112, 895–901 (2008). [CrossRef]
  16. H. V. Chu, Y.-J. Liu, Y.-W. Huang, and Y.-P. Zhao, “A high sensitive fiber SERS probe based on silver nanorod arrays,” Opt. Express 15(19), 12230–12239 (2007). [CrossRef] [PubMed]
  17. Q. Zhou, Y.-J. Liu, Y.-P. He, Z.-J. Zhang, and Y.-P. Zhao, “The effect of underlayer thin films on the surface-enhanced Raman scattering response of Ag nanorod substrates,” Appl. Phys. Lett. 97(12), 121902 (2010). [CrossRef]
  18. H. Raether, Surface Plasmons (Springer, Berlin, 1988).
  19. A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express 18(13), 14079–14086 (2010). [CrossRef] [PubMed]
  20. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966). [CrossRef]
  21. H.-F. Gai, J. Wang, and Q. Tian, “Modified Debye model parameters of metals applicable for broadband calculations,” Appl. Opt. 46(12), 2229–2233 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited