OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 8 — Apr. 11, 2011
  • pp: 7339–7348

Beating Nyquist with light: a compressively sampled photonic link

J. M. Nichols and F. Bucholtz  »View Author Affiliations

Optics Express, Vol. 19, Issue 8, pp. 7339-7348 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (770 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the successful demonstration of a compressively sampled photonic link. The system takes advantage of recent theoretical developments in compressive sampling to enable signal recovery beyond the Nyquist limit of the digitizer. This rather remarkable result requires that (1) the signal being recovered has a sparse (low-dimensional) representation and (2) the digitized samples be incoherent with this representation. We describe an all-photonic system architecture that meets these requirements and then show that 1GHz harmonic signals can be faithfully reconstructed even when digitizing at 500MS/s, well below the Nyquist rate.

© 2011 OSA

OCIS Codes
(000.3870) General : Mathematics
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 21, 2011
Revised Manuscript: March 7, 2011
Manuscript Accepted: March 7, 2011
Published: April 1, 2011

J. M. Nichols and F. Bucholtz, "Beating Nyquist with light: a compressively sampled photonic link," Opt. Express 19, 7339-7348 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Campmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007). [CrossRef]
  2. C. H. Lee, Microwave Photonics (CRC Press, 2007).
  3. J. A. Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg, and R. G. Baraniuk, “Beyond Nyquist: Efficient Sampling of Sparse Bandlimited Signals,” IEEE Trans. Inf. Theory 56(1), 520–544 (2010). [CrossRef]
  4. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel Imaging via Compressive Sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008). [CrossRef]
  5. W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93, 121105 (2008). [CrossRef]
  6. S. Gazit, A. Szameit, Y. C. Eldar, and M. Segev, “Super-resolution and reconstruction of sparse sub-wavelength images,” Opt. Express 17(26), 23920–23946 (2009). [CrossRef]
  7. O. Katz, Y. Bromberg, and Y. Silberburg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009). [CrossRef]
  8. D. Yang, H. Li, G. Peterson, and A. Fathy, “Compressed Sensing Based UWB Receiver: Hardware Compressing and FPGA Reconstruction,” Proceedings of the 43rd Conference on Information Sciences and Systems (CISS) (2009).
  9. M. Mishali and Y. C. Eldar, “From Theory to Practice: Sub-Nyquist Sampling of Sparse Wideband Analog Signals,” IEEE J. Sel. Top. Signal Process. 4(2), 375–391 (2010). [CrossRef]
  10. M. Mishali and Y. C. Eldar, “Xampling: Analog Data Compression,” vol. http://doi.ieeecomputersociety.org/10.1109/DCC.2010.39 of Proceedings of the 2010 Data Compression Conference, pp. 366–375 (2010).
  11. E. J. Candes and T. Tao, “Decoding by Linear Programming,” IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005). [CrossRef]
  12. E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006). [CrossRef]
  13. D. L. Donoho, “Compressed Sensing,” IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006). [CrossRef]
  14. E. J. Candes and M. B. Wakin, “An Introduction to Compressive Sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008). [CrossRef]
  15. J. Romberg, “Imaging Via Compressive Sampling,” IEEE Signal Process. Mag. 25(2), 14–20 (2008). [CrossRef]
  16. R. G. Baraniuk, “Compressive Sensing,” IEEE Signal Process. Mag. 24, 118–124 (2007). [CrossRef]
  17. J. M. Nichols, M. Currie, F. Buholtz, and W. A. Link, “Bayesian Estimation of Weak Material Dispersion: Theory and Experiment,” Opt. Express 18(3), 2076–2089 (2010). [CrossRef] [PubMed]
  18. M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems,” IEEE J. Sel. Top. Signal Process. 1(4), 586–597 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited