OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 8 — Apr. 11, 2011
  • pp: 7451–7467

Zero-guard-interval coherent optical OFDM with overlapped frequency-domain CD and PMD equalization

Chen Chen, Qunbi Zhuge, and David V. Plant  »View Author Affiliations


Optics Express, Vol. 19, Issue 8, pp. 7451-7467 (2011)
http://dx.doi.org/10.1364/OE.19.007451


View Full Text Article

Enhanced HTML    Acrobat PDF (1546 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper presents a new channel estimation/equalization algorithm for coherent OFDM (CO-OFDM) digital receivers, which enables the elimination of the cyclic prefix (CP) for OFDM transmission. We term this new system as the zero-guard-interval (ZGI)-CO-OFDM. ZGI-CO-OFDM employs an overlapped frequency-domain equalizer (OFDE) to compensate both chromatic dispersion (CD) and polarization mode dispersion (PMD) before the OFDM demodulation. Despite the zero CP overhead, ZGI-CO-OFDM demonstrates a superior PMD tolerance than the previous reduced-GI (RGI)-CO-OFDM, which is verified under several different PMD conditions. Additionally, ZGI-CO-OFDM can improve the channel estimation accuracy under high PMD conditions by using a larger intra-symbol frequency-averaging (ISFA) length as compared to RGI-CO-OFDM. ZGI-CO-OFDM also enables the use of ever smaller fast Fourier transform (FFT) sizes (i.e. <128), while maintaining the zero CP overhead. Finally, we provide an analytical comparison of the computation complexity between the conventional, RGI- and ZGI- CO-OFDM. We show that ZGI-CO-OFDM requires reasonably small additional computation effort (~13.6%) compared to RGI-CO-OFDM for 112-Gb/s transmission over a 1600-km dispersion-uncompensated optical link.

© 2011 OSA

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4080) Fiber optics and optical communications : Modulation

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: January 3, 2011
Revised Manuscript: February 18, 2011
Manuscript Accepted: February 19, 2011
Published: April 4, 2011

Citation
Chen Chen, Qunbi Zhuge, and David V. Plant, "Zero-guard-interval coherent optical OFDM with overlapped frequency-domain CD and PMD equalization," Opt. Express 19, 7451-7467 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-8-7451


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Qi, T. Yan, M. Yiran, and W. Shieh, “Experimental demonstration and numerical simulation of 107-Gb/s high spectral efficiency coherent optical OFDM,” J. Lightwave Technol. 27(3), 168–176 (2009). [CrossRef]
  2. S. L. Jansen, I. Morita, T. C. W. Schenk, and H. Tanaka, “121.9-Gb/s PDM-OFDM transmission with 2-b/s/Hz spectral efficiency over 1000 km of SSMF,” J. Lightwave Technol. 27(3), 177–188 (2009). [CrossRef]
  3. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express 17(11), 9421–9427 (2009). [CrossRef] [PubMed]
  4. X. Liu, S. Chandrasekhar, B. Zhu, P. J. Winzer, A. H. Gnauck, and D. W. Peckham, “448-Gb/s reduced-guard-interval CO-OFDM transmission over 2000 km of ultra-large-area fiber and five 80-GHz-grid ROADMs,” J. Lightwave Technol. 29(4), 483–490 (2011). [CrossRef]
  5. H. Takahashi, K. Takeshima, I. Morita, and H. Tanaka, “400-Gbit/s optical OFDM transmission over 80 km in 50-GHz frequency grid,” in Proceedings of ECOC’10, Torino, Italy (2010), paper Tu.3.C.1.
  6. S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100 GbE: QPSK versus OFDM,” Opt. Fiber Technol. 15(5-6), 407–413 (2009). [CrossRef]
  7. A. Barbieri, G. Colavolpe, T. Foggi, E. Forestieri, and G. Prati, “OFDM versus single-carrier transmission for 100 Gbps optical communication,” J. Lightwave Technol. 28(17), 2537–2551 (2010). [CrossRef]
  8. B. Spinnler, “Equalizer design and complexity for digital coherent receivers,” IEEE Sel. Top. J. Quantum Electron. 16(5), 1180–1192 (2010). [CrossRef]
  9. R. Kudo, T. Kobayashi, K. Ishihara, Y. Takatori, A. Sano, and Y. Miyamoto, “Coherent optical single carrier transmission using overlap frequency domain equalization for long-haul optical systems,” J. Lightwave Technol. 27(16), 3721–3728 (2009). [CrossRef]
  10. L. B. Du, and A. J. Lowery, “Mitigation of dispersion penalty for short-cyclic prefix coherent optical OFDM systems,” in Proceedings of ECOC’10, Torino, Italy (2010), paper Tu.4.A.5.
  11. C. Chen, Q, Zhuge and D. V. Plant, “Reduced-guard-interval CO-OFDM with overlapped frequency-domain CD and PMD equalization,” in Proceedings of OFC’11, Los Angeles, CA (2011), paper OWE7.
  12. A. Sano, Y. Takatori, and Y. Miyamoto, “No-guard-interval coherent optical OFDM for 100-Gb/s/ch long-haul transmission systems,” in Proceedings of OFC’09, San Diego, USA (2009), paper OTuO3.
  13. S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “Transmission of 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber,” in Proceedings of ECOC’09, Vienna, Austria, PD2.6. (2009).
  14. X. Liu and F. Buchali, “Intra-symbol frequency-domain averaging based channel estimation for coherent optical OFDM,” Opt. Express 16(26), 21944–21957 (2008). [CrossRef] [PubMed]
  15. Y. Ma, W. Shieh, and X. Yi, “Characterization of nonlinearity performance for coherent optical OFDM signals under influence of PMD,” Electron. Lett. 43(17), 943–945 (2007). [CrossRef]
  16. Q. Yang, N. Kaneda, X. Liu, and W. Shieh, “Demonstration of frequency-domain averaging based channel estimation for 40-Gb/s CO-OFDM with high PMD,” IEEE Photon. Technol. Lett. 21(20), 1544–1546 (2009). [CrossRef]
  17. M. E. Mousa-Pasandi and D. V. Plant, “Zero-overhead phase noise compensation via decision-directed phase equalizer for coherent optical OFDM,” Opt. Express 18(20), 20651–20660 (2010). [CrossRef] [PubMed]
  18. Q. Zhuge, C. Chen, and D. V. Plant, “Impact of intra-channel fiber nonlinearity on reduced-guard-interval CO-OFDM transmission,” in Proceedings of OFC’11, Los Angeles, CA (2011), paper OWO3.
  19. S. Chen, Q. Yang, Y. Ma, and W. Shieh, “Real-time multi-gigabit receiver for coherent optical MIMO-OFDM signals,” J. Lightwave Technol. 27(16), 3699–3704 (2009). [CrossRef]
  20. N. Kaneda, Q. Yang, X. Liu, S. Chandrasekhar, W. Shieh, and Y.-K. Chen, “Real-time 2.5 GS/s coherent optical receiver for 53.3-Gb/s sub-banded OFDM,” J. Lightwave Technol. 28(4), 494–501 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited