OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 8 — Apr. 11, 2011
  • pp: 7537–7545

Generation of isolated single attosecond hard X-ray pulse in enhanced self-amplified spontaneous emission scheme

Sandeep Kumar, Heung-Sik Kang, and Dong Eon Kim  »View Author Affiliations


Optics Express, Vol. 19, Issue 8, pp. 7537-7545 (2011)
http://dx.doi.org/10.1364/OE.19.007537


View Full Text Article

Enhanced HTML    Acrobat PDF (1035 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The generation of isolated attosecond hard x-ray pulse has been studied under the enhanced self-amplified spontaneous emission (ESASE) scheme with the density and energy modulation of an electron bunch. It is demonstrated in simulation that an isolated attosecond hard x-ray pulse of a high contrast ratio can be produced by adjusting a driver laser wavelength and the energy distribution of an electron bunch. An isolated attosecond pulse of ~146 attosecond full-width half-maximum (FWHM) at 0.1 nm wavelength is obtained with a saturation length of 34 meter for the electron beam parameters of Korean X-ray Free Electron laser.

© 2011 OSA

OCIS Codes
(140.2600) Lasers and laser optics : Free-electron lasers (FELs)
(140.7240) Lasers and laser optics : UV, EUV, and X-ray lasers
(320.5550) Ultrafast optics : Pulses
(140.7215) Lasers and laser optics : Undulator radiation

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 16, 2011
Revised Manuscript: March 22, 2011
Manuscript Accepted: March 23, 2011
Published: April 4, 2011

Citation
Sandeep Kumar, Heung-Sik Kang, and Dong Eon Kim, "Generation of isolated single attosecond hard X-ray pulse in enhanced self-amplified spontaneous emission scheme," Opt. Express 19, 7537-7545 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-8-7537


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001). [CrossRef] [PubMed]
  2. P. Tzallas, D. Charalambidis, N. A. Papadogiannis, K. Witte, and G. D. Tsakiris, “Direct observation of attosecond light bunching,” Nature 426(6964), 267–271 (2003). [CrossRef] [PubMed]
  3. R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Atomic transient recorder,” Nature 427(6977), 817–821 (2004). [CrossRef] [PubMed]
  4. G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314(5798), 443–446 (2006). [CrossRef] [PubMed]
  5. M. Schultze, E. Goulielmakis, M. Uiberacker, M. Hofstetter, J. Kim, D. E. Kim, F. Krausz, and U. Kleineberg, “Powerful 170-attosecond XUV pulses generated with few-cycle laser pulses and broadband multilayer optics,” N. J. Phys. 9(7), 243 (2007). [CrossRef]
  6. E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008). [CrossRef] [PubMed]
  7. H. Mashiko, S. Gilbertson, C. Li, S. D. Khan, M. M. Shakya, E. Moon, and Z. Chang, “Double optical gating of high-order harmonic generation with carrier-envelope phase stabilized lasers,” Phys. Rev. Lett. 100(10), 103906 (2008). [CrossRef] [PubMed]
  8. M. Uiberacker, T. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schröder, M. Lezius, K. L. Kompa, H. G. Muller, M. J. Vrakking, S. Hendel, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond real-time observation of electron tunnelling in atoms,” Nature 446(7136), 627–632 (2007). [CrossRef] [PubMed]
  9. E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves,” Science 305(5688), 1267–1269 (2004). [CrossRef] [PubMed]
  10. M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419(6909), 803–807 (2002). [CrossRef] [PubMed]
  11. K. Lee, Y. H. Cha, M. S. Shin, B. H. Kim, and D. E. Kim, “Relativistic nonlinear Thomson scattering as attosecond x-ray source,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(2), 026502 (2003). [CrossRef] [PubMed]
  12. D. E. Kim, H. Lee, S. Chung, and K. Lee, “Attosecond keV x-ray pulses driven by Thomson scattering in a tight focus regime,” N. J. Phys. 11(6), 063050 (2009). [CrossRef]
  13. S. Y. Chung, M. Yoon, and D. E. Kim, “Generation of attosecond x-ray and gamma-ray via Compton backscattering,” Opt. Express 17(10), 7853–7861 (2009). [CrossRef] [PubMed]
  14. A. A. Zholents and W. M. Fawley, “Proposal for intense attosecond radiation from an x-ray free-electron laser,” Phys. Rev. Lett. 92(22), 224801 (2004). [CrossRef] [PubMed]
  15. A. A. Zholents, “Method of an enhanced self-amplified spontaneous emission for x-ray free electron lasers,” Phys. Rev. ST Accel. Beams 8(4), 040701 (2005). [CrossRef]
  16. A. A. Zholents and M. S. Zolotorev, “Attosecond x-ray pulses produced by ultra short transverse slicing via laser electron beam interaction,” N. J. Phys. 10(2), 025005 (2008). [CrossRef]
  17. A. A. Zholents and G. Penn, “Obtaining attosecond x-ray pulses using a self-amplified spontaneous emission free electron laser,” Phys. Rev. ST Accel. Beams 8(5), 050704 (2005). [CrossRef]
  18. E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “A new technique to generate 100 GW-level attosecond x-ray pulses from the x-ray SASE FELs,” Opt. Commun. 239(1–3), 161–172 (2004). [CrossRef]
  19. E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “Terawatt-scale sub-10-fs laser technology –key to generation of GW-level attosecond pulses in x-ray free electron laser,” Opt. Commun. 237(1-3), 153–164 (2004). [CrossRef]
  20. R. Bonifacio, L. D. S. Souza, P. Pierini, and E. T. Scharlemann, “Generation of XUV light by resonant frequency tripling in a two-wiggler FEL amplifier,” Nucl. Instrum. Methods Phys. Res. A 296(1-3), 787–790 (1990). [CrossRef]
  21. L. H. Yu, “Generation of intense uv radiation by subharmonically seeded single-pass free-electron lasers,” Phys. Rev. A 44(8), 5178–5193 (1991). [CrossRef] [PubMed]
  22. J. Wu and L. H. Yu, “Coherent hard x-ray production by cascading stages of high gain harmonic generation,” Nucl. Instrum. Methods Phys. Res. A 475(1-3), 104–111 (2001). [CrossRef]
  23. E. Allaria and G. De Ninno, “Soft-x-ray coherent radiation using a single-cascade free-electron laser,” Phys. Rev. Lett. 99(1), 014801 (2007). [CrossRef] [PubMed]
  24. G. Stupakov, “Using the beam-echo effect for generation of short-wavelength radiation,” Phys. Rev. Lett. 102(7), 074801 (2009). [CrossRef] [PubMed]
  25. D. Xiang and G. Stupakov, “Echo-enabled harmonic generation free electron laser,” Phys. Rev. ST Accel. Beams 12(3), 030702 (2009). [CrossRef]
  26. Laser acceleration-focused laser http://www.slac.stanford.edu/~achao/LaserAccelerationFocussed.pdf .
  27. H.-S. Kang and S.-H. Nam, in Proceedings of the 32nd International FEL 2010 Conference (Malmo, Sweden, Aug. 23–27, 2010), http://fel2010.maxlab.lu.se/ .
  28. M. Borland, “Elegant: A flexible SSD-compliant code for accelerator simulation,” http://www.aps.anl.gov .
  29. S. Reiche, “GENESIS 1.3: a fully 3D time-dependent FEL simulation code Nucl. Instrum. Methods Phys. Res. A 429, 243–248 (1999), http://pbpl.physics.ucla.edu/~reiche/ .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited