OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 8 — Apr. 11, 2011
  • pp: 7664–7672

Demonstration of near infrared gas sensing using gold nanodisks on functionalized silicon

P.J. Rodríguez-Cantó, M. Martínez-Marco, F. J. Rodríguez-Fortuño, B. Tomás-Navarro, R. Ortuño, S. Peransí-Llopis, and A. Martínez  »View Author Affiliations

Optics Express, Vol. 19, Issue 8, pp. 7664-7672 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1087 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work, we demonstrate experimentally the use of an array of gold nanodisks on functionalized silicon for chemosensing purposes. The metallic nanostructures are designed to display a very strong plasmonic resonance in the infrared regime, which results in highly sensitive sensing. Unlike usual experiments which are based on the functionalization of the metal surface, we functionalized here the silicon substrate. This silicon surface was modified chemically by buildup of an organosilane self-assembled monolayer (SAM) containing isocyanate as functional group. These groups allow for an easy surface regeneration by simple heating, thanks to the thermally reversible interaction isocyanate-analyte, which allows the cyclic use of the sensor. The technique showed a high sensitivity to surface binding events in gas and allowed the surface regeneration by heating of the sensor at 150°C. A relative wavelength shift ∆λmax0 = 0.027 was obtained when the saturation level was reached.

© 2011 OSA

OCIS Codes
(130.6010) Integrated optics : Sensors
(240.6680) Optics at surfaces : Surface plasmons
(300.6340) Spectroscopy : Spectroscopy, infrared
(220.4241) Optical design and fabrication : Nanostructure fabrication
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: December 9, 2010
Revised Manuscript: February 23, 2011
Manuscript Accepted: February 23, 2011
Published: April 6, 2011

Virtual Issues
Vol. 6, Iss. 5 Virtual Journal for Biomedical Optics

P.J. Rodríguez-Cantó, M. Martínez-Marco, F. J. Rodríguez-Fortuño, B. Tomás-Navarro, R. Ortuño, S. Peransí-Llopis, and A. Martínez, "Demonstration of near infrared gas sensing using gold nanodisks on functionalized silicon," Opt. Express 19, 7664-7672 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics-a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001). [CrossRef]
  3. S. Link and M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Annu. Rev. Phys. Chem. 54(1), 331–366 (2003). [CrossRef] [PubMed]
  4. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007). [CrossRef]
  5. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008). [CrossRef] [PubMed]
  6. J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine (Lond) 1(2), 219–228 (2006). [CrossRef]
  7. D. R. Shankaran, K. V. Gobi, and N. Miura, “Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest,” Sens. Actuators B Chem. 121(1), 158–177 (2007). [CrossRef]
  8. N. Miura, K. Ogata, G. Sakai, T. Uda, and N. Yamazoe, “Detection of morphine in ppb range by using SPR (Surface-plasmon resonance) immunosensor,” Chem. Lett. 26(8), 713–714 (1997). [CrossRef]
  9. D. R. Shankaran, K. Matsumoto, K. Toko, and N. Miura, “Development and comparison of two immunoassays for the detection of 2,4,6-Trinitrotoluene (TNT) based on surface plasmon resonance,” Sens. Actuators B Chem. 114(1), 71–79 (2006). [CrossRef]
  10. S. Cosnier, “Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review,” Biosens. Bioelectron. 14(5), 443–456 (1999). [CrossRef] [PubMed]
  11. J. W. Lee, S. J. Sim, S. M. Cho, and J. Lee, “Characterization of a self-assembled monolayer of thiol on a gold surface and the fabrication of a biosensor chip based on surface plasmon resonance for detecting anti-GAD antibody,” Biosens. Bioelectron. 20(7), 1422–1427 (2005). [CrossRef]
  12. S. S. Mark, N. Sandhyarani, C. Zhu, C. Campagnolo, and C. A. Batt, “Dendrimer-functionalized self-assembled monolayers as a surface plasmon resonance sensor surface,” Langmuir 20(16), 6808–6817 (2004). [CrossRef] [PubMed]
  13. K. Kato, C. M. Dooling, K. Shinbo, T. H. Richardson, F. Kaneko, R. Tregonning, M. O. Vysotsky, and C. Hunter, “Surface plasmon resonance properties and gas response in porphyrin Langmuir–Blodgett films,” Eng. Aspects 198–200, 811–816 (2002). [CrossRef]
  14. W. Senaratne, L. Andruzzi, and C. K. Ober, “Self-assembled monolayers and polymer brushes in biotechnology: current applications and future perspectives,” Biomacromolecules 6(5), 2427–2448 (2005). [CrossRef] [PubMed]
  15. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008). [CrossRef] [PubMed]
  16. L. Yin, Y. Liu, Z. Ke, and J. Yin, “Preparation of a blocked isocyanate compound and its grafting onto styrene-b-(ethylene-co-1-buteno)-b-styrene triblock copolymer,” Eur. Polym. J. 45(1), 191–198 (2009). [CrossRef]
  17. K. Suyama, H. Iriyama, M. Shirai, and M. Tsunooka, “Curing systems using photolysis of carbamoyloxyimino groups and thermally regenerated isocyanate groups,” J. Photopolym. Sci. Technol. 14(2), 155–158 (2001). [CrossRef]
  18. S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, “Near-infrared surface plasmon resonance sensing on a silicon platform,” Sens. Actuators B Chem. 97(2-3), 409–414 (2004). [CrossRef]
  19. D. J. Shelton, D. W. Peters, M. B. Sinclair, I. Brener, L. K. Warne, L. I. Basilio, K. R. Coffey, and G. D. Boreman, “Effect of thin silicon dioxide layers on resonant frequency in infrared metamaterials,” Opt. Express 18(2), 1085–1090 (2010). [CrossRef] [PubMed]
  20. V. Bhalla, S. Carrara, C. Stagni, and B. Samorì, “Chip cleaning and regeneration for electrochemical sensor arrays,” Thin Solid Films 518(12), 3360–3366 (2010). [CrossRef]
  21. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123(7), 1471–1482 (2001). [CrossRef]
  22. M. J. S. Spencer and G. L. Nyberg, “Adsorption of silane and methylsilane on gold surfaces,” Surf. Sci. 573(2), 151–168 (2004). [CrossRef]
  23. R. Gradess, R. Abargues, A. Habbou, J. Canet-Ferrer, E. Pedrueza, A. Russell, J. L. Valdés, and J. P. Martínez-Pastor, “Localized surface plasmon resonance sensor based on Ag-PVA nanocomposites thin films,” J. Mater. Chem. 19(48), 9233–9240 (2009). [CrossRef]
  24. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004). [CrossRef]
  25. E. Mauriz, A. Calle, A. Montoya, and L. M. Lechuga, “Determination of environmental organic pollutants with a portable optical immunosensor,” Talanta 69(2), 359–364 (2006). [CrossRef]
  26. Q. Yu, S. Chen, A. D. Taylor, J. Homola, B. Hock, and S. Jiang, “Detection of low-molecular-weight domoic acid using surface plasmon resonance sensor,” Sens. Actuators B Chem. 107(1), 193–201 (2005). [CrossRef]
  27. X. Cui, F. Yang, Y. Sha, and X. Yang, “Real-time immunoassay of ferritin using surface plasmon resonance biosensor,” Talanta 60(1), 53–61 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited