OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 8 — Apr. 11, 2011
  • pp: 7769–7777

Observation of Autler-Townes splitting in six-wave mixing

Yanpeng Zhang, Peiying Li, Huaibin Zheng, Zhiguo Wang, Haixia Chen, Changbiao Li, Ruyi Zhang, and Min Xiao  »View Author Affiliations

Optics Express, Vol. 19, Issue 8, pp. 7769-7777 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (882 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report an observation of the self- and external-dressed Autler-Townes (AT) splitting in six-wave mixing (SWM) within an electromagnetically induce transparency window, which demonstrates the interaction between two coexisting SWM processes. The multi-dressed states induced by the nested interactions between many dressing fields and the five-level atomic system lead to the primary, secondary and triple AT splittings in the experiment. Such controlled multi-channel splitting of nonlinear optical signals can be used in a range of applications, e.g. the wavelength-demultiplexer in optical communication and quantum information processing.

© 2011 OSA

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(270.4180) Quantum optics : Multiphoton processes
(300.2570) Spectroscopy : Four-wave mixing

ToC Category:
Nonlinear Optics

Original Manuscript: February 15, 2011
Revised Manuscript: March 28, 2011
Manuscript Accepted: March 29, 2011
Published: April 6, 2011

Yanpeng Zhang, Peiying Li, Huaibin Zheng, Zhiguo Wang, Haixia Chen, Changbiao Li, Ruyi Zhang, and Min Xiao, "Observation of Autler-Townes splitting in six-wave mixing," Opt. Express 19, 7769-7777 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100(2), 703–722 (1955). [CrossRef]
  2. W. Chalupczak, W. Gawlik, and J. Zachorowski, “Four-wave mixing in strongly driven two-level systems,” Phys. Rev. A 49(6), 4895–4901 (1994). [CrossRef] [PubMed]
  3. J. B. Qi, G. Lazarov, X. J. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83(2), 288–291 (1999). [CrossRef]
  4. O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, and F. X. Kärtner, “Role of the carrier-envelope offset phase of few-cycle pulses in nonperturbative resonant nonlinear optics,” Phys. Rev. Lett. 89(12), 127401 (2002). [CrossRef] [PubMed]
  5. C. Ates, T. Pohl, T. Pattard, and J. M. Rost, “Antiblockade in Rydberg excitation of an ultracold lattice gas,” Phys. Rev. Lett. 98(2), 023002 (2007). [CrossRef] [PubMed]
  6. T. Amthor, C. Giese, C. S. Hofmann, and M. Weidemüller, “Evidence of antiblockade in an ultracold Rydberg gas,” Phys. Rev. Lett. 104(1), 013001 (2010). [CrossRef] [PubMed]
  7. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36 (1997). [CrossRef]
  8. M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995). [CrossRef] [PubMed]
  9. R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency-observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74(5), 670–673 (1995). [CrossRef] [PubMed]
  10. S. Wielandy and A. L. Gaeta, “Investigation of electromagnetically induced transparency in the strong probe regime,” Phys. Rev. A 58(3), 2500–2505 (1998). [CrossRef]
  11. Y. P. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99(12), 123603 (2007). [CrossRef] [PubMed]
  12. Z. C. Zuo, J. Sun, X. Liu, Q. Jiang, G. S. Fu, L. A. Wu, and P. M. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett. 97(19), 193904 (2006). [CrossRef] [PubMed]
  13. M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999). [CrossRef]
  14. M. Yan, E. G. Rickey, and Y. F. Zhu, “Observation of doubly dressed states in cold atoms,” Phys. Rev. A 64(1), 013412 (2001). [CrossRef]
  15. R. Drampyan, S. Pustelny, and W. Gawlik, “Electromagnetically induced transparency versus nonlinear Faraday effect: Coherent control of light-beam polarization,” Phys. Rev. A 80(3), 033815 (2009). [CrossRef]
  16. G. Wasik, W. Gawlik, J. Zachorowski, and Z. Kowal, “Competition of dark states: Optical resonances with anomalous magnetic field dependence,” Phys. Rev. A 64(5), 051802 (2001). [CrossRef]
  17. Y. P. Zhang, Z. Q. Nie, Z. G. Wang, C. B. Li, F. Wen, and M. Xiao, “Evidence of Autler-Townes splitting in high-order nonlinear processes,” Opt. Lett. 35(20), 3420–3422 (2010). [CrossRef] [PubMed]
  18. K. Dolgaleva, H. Shin, and R. W. Boyd, “Observation of a microscopic cascaded contribution to the fifth-order nonlinear susceptibility,” Phys. Rev. Lett. 103(11), 113902 (2009). [CrossRef] [PubMed]
  19. R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nat. Photonics 3(2), 103–106 (2009). [CrossRef]
  20. V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 4
Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited