OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 8 — Apr. 11, 2011
  • pp: 7903–7913

Fast scanning peripheral wave-front sensor for the human eye

Bart Jaeken, Linda Lundström, and Pablo Artal  »View Author Affiliations

Optics Express, Vol. 19, Issue 8, pp. 7903-7913 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1310 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We designed and built a fast scanning peripheral Hartmann-Shack (HS) wave-front sensor to measure the off-axis wave-front aberrations in the human eye. The new instrument is capable of measuring the optical quality over the central 80° horizontal visual field in 1.8 seconds with an angular resolution of 1°. The subject has an open field of view without any moving elements in the line-of-sight and the head is kept in place by a head-chin rest. The same efficiency, reliability and measurement quality as the current static HS sensor were found but with much higher acquisition speed and comfort for the patients. This instrument has the potential to facilitate and improve future research on the peripheral optical quality of the eye in large groups of subjects.

© 2011 OSA

OCIS Codes
(120.5800) Instrumentation, measurement, and metrology : Scanners
(330.7310) Vision, color, and visual optics : Vision
(330.7325) Vision, color, and visual optics : Visual optics, metrology

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: January 5, 2011
Revised Manuscript: March 23, 2011
Manuscript Accepted: March 25, 2011
Published: April 8, 2011

Virtual Issues
Vol. 6, Iss. 5 Virtual Journal for Biomedical Optics

Bart Jaeken, Linda Lundström, and Pablo Artal, "Fast scanning peripheral wave-front sensor for the human eye," Opt. Express 19, 7903-7913 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Rempt, J. Hoogerheide, and W. P. H. Hoogenboom, “Peripheral retinoscopy and the skiagram,” Ophthalmologica 162(1), 1–10 (1971). [CrossRef] [PubMed]
  2. R. Navarro, P. Artal, and D. R. Williams, “Modulation transfer of the human eye as a function of retinal eccentricity,” J. Opt. Soc. Am. A 10(2), 201–212 (1993). [CrossRef] [PubMed]
  3. A. Guirao and P. Artal, “Off-axis monochromatic aberrations estimated from double pass measurements in the human eye,” Vision Res. 39(2), 207–217 (1999). [CrossRef] [PubMed]
  4. D. R. Williams, P. Artal, R. Navarro, M. J. McMahon, and D. H. Brainard, “Off-axis optical quality and retinal sampling in the human eye,” Vision Res. 36(8), 1103–1114 (1996). [CrossRef] [PubMed]
  5. L. Lundström, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vis. 9(6), 17, 1–11 (2009). [CrossRef] [PubMed]
  6. J. Hoogerheide, F. Rempt, and W. P. H. Hoogenboom, “Acquired myopia in young pilots,” Ophthalmologica 163(4), 209–215 (1971). [CrossRef] [PubMed]
  7. W. N. Charman and H. Radhakrishnan, “Peripheral refraction and the development of refractive error: a review,” Ophthalmic Physiol. Opt. 30(4), 321–338 (2010). [CrossRef] [PubMed]
  8. L. Lundström, J. Gustafsson, and P. Unsbo, “Vision evaluation of eccentric refractive correction,” Optom. Vis. Sci. 84(11), 1046–1052 (2007). [CrossRef] [PubMed]
  9. J. Gustafsson and P. Unsbo, “Eccentric correction for off-axis vision in central visual field loss,” Optom. Vis. Sci. 80(7), 535–541 (2003). [CrossRef] [PubMed]
  10. A. V. Goncharov, M. Nowakowski, M. T. Sheehan, and C. Dainty, “Reconstruction of the optical system of the human eye with reverse ray-tracing,” Opt. Express 16(3), 1692–1703 (2008). [CrossRef] [PubMed]
  11. X. Wei and L. Thibos, “Modeling the eye’s optical system by ocular wavefront tomography,” Opt. Express 16(25), 20490–20502 (2008). [CrossRef] [PubMed]
  12. P. Artal, A. M. Derrington, and E. Colombo, “Refraction, aliasing, and the absence of motion reversals in peripheral vision,” Vision Res. 35(7), 939–947 (1995). [CrossRef] [PubMed]
  13. Y. Z. Wang, L. N. Thibos, and A. Bradley, “Effects of refractive error on detection acuity and resolution acuity in peripheral vision,” Invest. Ophthalmol. Vis. Sci. 38(10), 2134–2143 (1997). [PubMed]
  14. L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, N. Gorceix, J. Gustafsson, P. Unsbo, and P. Artal, “Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye,” Opt. Express 15(20), 12654–12661 (2007). [CrossRef] [PubMed]
  15. H. Hofer, P. Artal, B. Singer, J. L. Aragon, and D. R. Williams, “Dynamics of the eye wave aberrations,” J. Opt. Soc. Am. A 18(3), 497–506 (2001). [CrossRef]
  16. H. Radhakrishnan and W. N. Charman, “Peripheral refraction measurement: does it matter if one turns the eye or the head?” Ophthalmic Physiol. Opt. 28(1), 73–82 (2008). [CrossRef] [PubMed]
  17. P. Prado, J. Arines, S. Bará, S. Manzanera, A. Mira-Agudelo, and P. Artal, “Changes of ocular aberrations with gaze,” Ophthalmic Physiol. Opt. 29(3), 264–271 (2009). [CrossRef] [PubMed]
  18. J. Tabernero and F. Schaeffel, “Fast scanning photoretinoscope for measuring peripheral refraction as a function of accommodation,” J. Opt. Soc. Am. A 26(10), 2206–2210 (2009). [CrossRef]
  19. X. Wei and L. Thibos, “Design and validation of a scanning Shack Hartmann aberrometer for measurements of the eye over a wide field of view,” Opt. Express 18(2), 1134–1143 (2010). [CrossRef] [PubMed]
  20. R. D. Ferguson, Z. Zhong, D. X. Hammer, M. Mujat, A. H. Patel, C. Deng, W. Zou, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope with integrated wide-field retinal imaging and tracking,” J. Opt. Soc. Am. A 27(11), A265–A277 (2010). [CrossRef]
  21. D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46(8-9), 1450–1458 (2006). [CrossRef]
  22. P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann-Shack sensor in the human eye,” J. Opt. Soc. Am. A 17(8), 1388–1398 (2000). [CrossRef]
  23. L. Lundström and P. Unsbo, “Unwrapping Hartmann-Shack images from highly aberrated eyes using an iterative B-spline based extrapolation method,” Optom. Vis. Sci. 81(5), 383–388 (2004). [CrossRef] [PubMed]
  24. L. Lundström, J. Gustafsson, and P. Unsbo, “Population distribution of wavefront aberrations in the peripheral human eye,” J. Opt. Soc. Am. A 26(10), 2192–2198 (2009). [CrossRef]
  25. L. Lundström and P. Unsbo, “Transformation of Zernike coefficients: scaled, translated, and rotated wavefronts with circular and elliptical pupils,” J. Opt. Soc. Am. A 24(3), 569–577 (2007). [CrossRef]
  26. J. Santamaría, P. Artal, and J. Bescós, “Determination of the point-spread function of human eyes using a hybrid optical-digital method,” J. Opt. Soc. Am. A 4(6), 1109–1114 (1987). [CrossRef] [PubMed]
  27. C. Fedtke, F. Manns, and A. Ho, “The entrance pupil of the human eye: a three-dimensional model as a function of viewing angle,” Opt. Express 18(21), 22364–22376 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (1460 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited