OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 7929–7936

Direct femtosecond laser waveguide writing inside zinc phosphate glass

Luke B. Fletcher, Jon J. Witcher, Neil Troy, Signo T. Reis, Richard K. Brow, and Denise M. Krol  »View Author Affiliations


Optics Express, Vol. 19, Issue 9, pp. 7929-7936 (2011)
http://dx.doi.org/10.1364/OE.19.007929


View Full Text Article

Enhanced HTML    Acrobat PDF (1294 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the relationship between the initial glass composition and the resulting microstructural changes after direct femtosecond laser waveguide writing with a 1 kHz repetition rate Ti:sapphire laser system. A zinc polyphosphate glass composition with an oxygen to phosphorus ratio of 3.25 has demonstrated positive refractive index changes induced inside the focal volume of a focusing microscope objective for laser pulse energies that can achieve intensities above the modification threshold. The permanent photo-induced changes can be used for direct fabrication of optical waveguides using single scan writing techniques. Changes to the localized glass network structure that produce positive changes in the refractive index of zinc phosphate glasses upon femtosecond laser irradiation have been studied using scanning confocal micro-Raman and fluorescence spectroscopy.

© 2011 OSA

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.7370) Optical devices : Waveguides
(320.2250) Ultrafast optics : Femtosecond phenomena

ToC Category:
Laser Microfabrication

History
Original Manuscript: January 24, 2011
Revised Manuscript: February 21, 2011
Manuscript Accepted: February 22, 2011
Published: April 11, 2011

Citation
Luke B. Fletcher, Jon J. Witcher, Neil Troy, Signo T. Reis, Richard K. Brow, and Denise M. Krol, "Direct femtosecond laser waveguide writing inside zinc phosphate glass," Opt. Express 19, 7929-7936 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-9-7929


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in Si02 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994). [CrossRef]
  2. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996). [CrossRef] [PubMed]
  3. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  4. E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71(7), 882–884 (1997). [CrossRef]
  5. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997). [CrossRef]
  6. K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2006). [CrossRef]
  7. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008). [CrossRef]
  8. M. J. Weber, “Science and technology of laser glass,” J. Non-Cryst. Solids 123(1-3), 208–222 (1990). [CrossRef]
  9. R. Osellame, S. Taccheo, G. Cerullo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. De Silvestri, “Optical gain in Er-Yb doped waveguides fabricated by femtosecond laser pulses,” Electron. Lett. 38(17), 964–965 (2002). [CrossRef]
  10. S. Taccheo, G. Della Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett. 29(22), 2626–2628 (2004). [CrossRef] [PubMed]
  11. V. R. Bhardwaj, E. Simova, P. B. Corkum, D. M. Rayner, C. Hnatovsky, R. S. Taylor, B. Schreder, M. Kluge, and J. Zimmer, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys. 97(8), 083102 (2005). [CrossRef]
  12. J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82(15), 2371–2373 (2003). [CrossRef]
  13. M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser–photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008). [CrossRef]
  14. D. Esser, D. Mahlmann, D. Wortmann, and J. Gottmann, “Interference microscopy of femtosecond laser written waveguides in phosphate glass,” Appl. Phys. B 96(2-3), 453–457 (2009). [CrossRef]
  15. L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er–Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys. 106(8), 083107 (2009). [CrossRef]
  16. R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the C-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron. 12(2), 277–285 (2006). [CrossRef]
  17. R. Osellame, N. Chiodo, G. della Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Optical waveguide writing with a diode-pumped femtosecond oscillator,” Opt. Lett. 29(16), 1900–1902 (2004). [CrossRef] [PubMed]
  18. G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11(1), 013001 (2009). [CrossRef]
  19. A. Ferrer, A. Ruiz de la Cruz, D. Puerto, W. Gawelda, J. A. Vallés, M. A. Rebolledo, V. Berdejo, J. Siegel, and J. Solis, “In situ assessment and minimization of nonlinear propagation effects for femtosecond-laser waveguide writing in dielectrics,” J. Opt. Soc. Am. B 27(8), 1688–1692 (2010). [CrossRef]
  20. R. K. Brow, “Review: the structure of simple phosphate glasses,” J. Non-Cryst. Sol. 263–264,1–28 (2000). [CrossRef]
  21. R. K. Brow, D. R. Tallant, S. T. Myers, and C. C. Phifer, “The short-range structure of zinc polyphosphate glass,” J. Non-Cryst. Solids 191(1-2), 45–55 (1995). [CrossRef]
  22. R. K. Brow, “Nature of alumina in phosphate glass: I, properties of sodium aluminophosphate glass,” J. Am. Ceram. Soc. 76(4), 913 (1993). [CrossRef]
  23. R. K. Brow, J. Kirkpatrick, and G. Turner, “Nature of alumina in phosphate glass: II, Structure of sodium aluminophosphate glass,” J. Am. Ceram. Soc. 76(4), 1919 (1993).
  24. J. T. Krause and C. R. Kurkjian, “Vibrational anomalies in inorganic glass formers,” J. Am. Ceram. Soc. 51(4), 226–227 (1968). [CrossRef]
  25. L. Popović, D. de Waal, and J. C. A. Boeyens, “Correlation between Raman wavenumbers and P—O bond lengths in crystalline inorganic phosphates,” J. Raman Spectrosc. 36, 2–11 (2005). [CrossRef]
  26. J. W. Chan, T. Huser, J. S. Hayden, S. H. Risbud, and D. M. Krol, “Fluorescence spectroscopy of color centers generated in phosphate glasses after exposure to femtosecond laser pulses,” J. Am. Ceram. Soc. 85(5), 1037–1040 (2002). [CrossRef]
  27. D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys. 108(3), 033110 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 4 Fig. 3
 
Fig. 2
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited