OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 7960–7970

Coherent anti-Stokes Raman scattering microscopy imaging with suppression of four-wave mixing in optical fibers

Zhiyong Wang, Liang Gao, Pengfei Luo, Yaliang Yang, Ahmad A. Hammoudi, Kelvin K. Wong, and Stephen T. C. Wong  »View Author Affiliations


Optics Express, Vol. 19, Issue 9, pp. 7960-7970 (2011)
http://dx.doi.org/10.1364/OE.19.007960


View Full Text Article

Enhanced HTML    Acrobat PDF (1411 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrated an optical fiber delivered coherent anti-Stokes Raman scattering (CARS) microscopy imaging system with a polarization-based mechanism for suppression of four-wave mixing (FWM) signals in delivery fiber. Polarization maintaining fibers (PMF) were used as the delivery fiber to ensure stability of the state of polarization (SOP) of lasers. The pump and Stokes waves were coupled into PMFs at orthogonal SOPs along the slow and fast axes of PMFs, respectively, resulting in a significant reduction of FWM signals generated in the fiber. At the output end of PMFs, a dual-wavelength waveplate was used to realign the SOPs of the two waves into identical SOPs prior to their entrance into the CARS microscope. Therefore, it allows the pump and Stokes waves with identical SOPs to excite samples at highest excitation efficiency. Our experimental results showed that this polarization-based FWM-suppressing mechanism can dramatically reduce FWM signals generated in PMFs up to approximately 99%. Meanwhile, the PMF-delivered CARS microscopy system with this mechanism can still produce high-quality CARS images. Consequently, our PMF-delivered CARS microscopy imaging system with the polarization-based FWM-suppressing mechanism potentially offers a new strategy for building fiber-based CARS endoscopes with effective suppression of FWM background noises.

© 2011 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Microscopy

History
Original Manuscript: February 9, 2011
Revised Manuscript: March 18, 2011
Manuscript Accepted: March 18, 2011
Published: April 11, 2011

Virtual Issues
Vol. 6, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Zhiyong Wang, Liang Gao, Pengfei Luo, Yaliang Yang, Ahmad A. Hammoudi, Kelvin K. Wong, and Stephen T. C. Wong, "Coherent anti-Stokes Raman scattering microscopy imaging with suppression of four-wave mixing in optical fibers," Opt. Express 19, 7960-7970 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-9-7960


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004). [CrossRef]
  2. F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31(12), 1872–1874 (2006). [CrossRef] [PubMed]
  3. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005). [CrossRef] [PubMed]
  4. X. Nan, J. X. Cheng, and X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 44(11), 2202–2208 (2003). [CrossRef] [PubMed]
  5. J. X. Cheng, “Coherent anti-Stokes Raman scattering microscopy,” Appl. Spectrosc. 61(9), 197–208 (2007). [CrossRef] [PubMed]
  6. M. Muller and A. Zumbusch, “Coherent anti-Stokes Raman scattering microscopy,” ChemPhysChem 8(15), 2156–2170 (2007). [CrossRef] [PubMed]
  7. C. L. Evans, X. Xu, S. Kesari, X. S. Xie, S. T. C. Wong, and G. S. Young, “Chemically-selective imaging of brain structures with CARS microscopy,” Opt. Express 15(19), 12076–12087 (2007). [CrossRef] [PubMed]
  8. J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106(34), 8493–8498 (2002). [CrossRef]
  9. M. Müller and J. M. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106(14), 3715–3723 (2002). [CrossRef]
  10. C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1(1), 883–909 (2008). [CrossRef]
  11. H. Wang, T. B. Huff, and J.-X. Cheng, “Coherent anti-Stokes Raman scattering imaging with a laser source delivered by a photonic crystal fiber,” Opt. Lett. 31(10), 1417–1419 (2006). [CrossRef] [PubMed]
  12. F. Legare, C. L. Evans, F. Ganikhanov, and X. S. Xie, “Towards CARS endoscopy,” Opt. Express 14(10), 4427–4432 (2006). [CrossRef] [PubMed]
  13. A. Downes, R. Mouras, and A. Elfick, “A versatile CARS microscope for biological imaging,” J. Raman Spectrosc. 40(7), 757–762 (2009). [CrossRef]
  14. M. Balu, G. Liu, Z. Chen, B. J. Tromberg, and E. O. Potma, “Fiber delivered probe for efficient CARS imaging of tissues,” Opt. Express 18(3), 2380–2388 (2010). [CrossRef] [PubMed]
  15. Z. Wang, Y. Yang, P. Luo, L. Gao, K. K. Wong, and S. T. C. Wong, “Delivery of picosecond lasers in multimode fibers for coherent anti-Stokes Raman scattering imaging,” Opt. Express 18(12), 13017–13028 (2010). [CrossRef] [PubMed]
  16. E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J. F. Le Gargasson, and E. Vicaut, “Fibered confocal fluorescence microscopy (Cell-viZio™) facilitates extended imaging in the field of microcirculation. a comparison with intravital microscopy,” J. Vasc. Res. 41(5), 400–411 (2004). [CrossRef] [PubMed]
  17. U. Sharma, N. M. Fried, and J. U. Kang, “All-fiber common-path optical coherence tomography: sensitivity optimization and system analysis,” IEEE J. Sel. Top. Quantum Electron. 11(4), 799–805 (2005). [CrossRef]
  18. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997). [CrossRef] [PubMed]
  19. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005). [CrossRef] [PubMed]
  20. S. Murugkar, B. Smith, P. Srivastava, A. Moica, M. Naji, C. Brideau, P. K. Stys, and H. Anis, “Miniaturized multimodal CARS microscope based on MEMS scanning and a single laser source,” Opt. Express 18(23), 23796–23804 (2010). [CrossRef] [PubMed]
  21. C. S. Jun, B. Y. Kim, J. H. Park, J. Y. Lee, E. S. Lee, and D.-Il. Yeom, “Investigation of a four-wave mixing signal generated in fiber-delivered CARS microscopy,” Appl. Opt. 49(20), 3916–3921 (2010). [CrossRef] [PubMed]
  22. G. P. Agrawal, Fiber-Optic Communication Systems, 2nd Ed (Wiley InterScience, 1997).
  23. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  24. B. DeBoo, J. Sasian, and R. Chipman, “Degree of polarization surfaces and maps for analysis of depolarization,” Opt. Express 12(20), 4941–4958 (2004). [CrossRef] [PubMed]
  25. E. Collett, Polarized Light in Fiber Optics (Polawave Group, 2003), pp. 46–54.
  26. R. W. Boyd, Nonlinear Optics (Academic Press, 2003), pp. 356–358.
  27. K. Inoue, “Polarization effect on four-wave mixing efficiency in a single-mode fiber,” IEEE J. Quantum Electron. 28(4), 883–894 (1992). [CrossRef]
  28. R. H. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quantum Electron. 11(3), 100–103 (1975). [CrossRef]
  29. P. L. Baldeck and R. R. Alfano, “Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers,” J. Lightwave Technol. 5(12), 1712–1715 (1987). [CrossRef]
  30. A. Volkmer, “Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy,” J. Phys. D Appl. Phys. 38(5), R59–R81 (2005). [CrossRef]
  31. J.-X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26(17), 1341–1343 (2001). [CrossRef]
  32. J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-stokes raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106(34), 8493–8498 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited