OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 8167–8172

Mode-beating-enabled stopband narrowing in all-solid photonic bandgap fiber and sensing applications

Youfu Geng, Xuejin Li, Xiaoling Tan, Yuanlong Deng, and Yongqin Yu  »View Author Affiliations

Optics Express, Vol. 19, Issue 9, pp. 8167-8172 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1092 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, core-cladding modal beating in a short piece of all-solid photonic bandgap fiber (AS-PBF) is observed in longitudinal propagation direction. It is demonstrated that at the stopband range of AS-PBF, the power could transfer back and forth between the fiber core and the first layer of high-index rods. Both experimental results and the theoretical analysis from transverse coupled mode theory confirm that the 3-dB width of the sharp stopband could be significantly narrowed by multicycles of such core-cladding modal couplings, which is of great benefit to the high-resolution sensing applications. Based on such a guiding regime, a high-temperature sensor head is also made and its response to temperature is tested to be of 59.9 pm/°C.

© 2011 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:

Original Manuscript: December 22, 2010
Revised Manuscript: March 23, 2011
Manuscript Accepted: March 31, 2011
Published: April 14, 2011

Youfu Geng, Xuejin Li, Xiaoling Tan, Yuanlong Deng, and Yongqin Yu, "Mode-beating-enabled stopband narrowing in all-solid photonic bandgap fiber and sensing applications," Opt. Express 19, 8167-8172 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, F. Luan, and P. S. Russell, “Photonic bandgap with an index step of one percent,” Opt. Express 13(1), 309–314 (2005). [CrossRef] [PubMed]
  2. G. Ren, P. Shum, L. Zhang, X. Yu, W. Tong, and J. Luo, “Low-loss all-solid photonic bandgap fiber,” Opt. Lett. 32(9), 1023–1025 (2007). [CrossRef] [PubMed]
  3. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002). [CrossRef]
  4. T. P. White, R. C. McPhedran, C. Martijnde Sterke, N. M. Litchinitser, and B. J. Eggleton, “Resonance and scattering in microstructured optical fibers,” Opt. Lett. 27(22), 1977–1979 (2002). [CrossRef]
  5. N. M. Litchinitser and E. Poliakov, “Antiresonant guiding microstructured optical fibers for sensing applications,” Appl. Phys. B 81(2-3), 347–351 (2005). [CrossRef]
  6. N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Opt. Express 12(8), 1540–1550 (2004). [CrossRef] [PubMed]
  7. L. Rindorf and O. Bang, “Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing,” J. Opt. Soc. Am. B 25(3), 310–324 (2008). [CrossRef]
  8. J. Sun, C. C. Chan, P. Shum, and C. L. Poh, “Experimental analysis of spectral characteristics of antiresonant guiding photonic crystal fibers,” Opt. Lett. 33(8), 809–811 (2008). [CrossRef] [PubMed]
  9. D. Noordegraaf, L. Scolari, J. Laegsgaard, T. Tanggaard Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S. T. Wu, “Avoided-crossing-based liquid-crystal photonic-bandgap notch filter,” Opt. Lett. 33(9), 986–988 (2008). [CrossRef] [PubMed]
  10. G. Ren, P. Shum, L. Zhang, M. Yan, X. Yu, W. Tong, and J. Luo, “Design of All-Solid Bandgap Fiber With Improved Confinement and Bend Losses,” IEEE Photon. Technol. Lett. 18(24), 2560–2562 (2006). [CrossRef]
  11. D. K. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009). [CrossRef] [PubMed]
  12. P. Steinvurzel, C. Martijn de Sterke, M. J. Steel, B. T. Kuhlmey, and B. J. Eggleton, “Single scatterer Fano resonances in solid core photonic band gap fibers,” Opt. Express 14(19), 8797–8811 (2006). [CrossRef] [PubMed]
  13. X. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20(2), 255–266 (2002). [CrossRef]
  14. G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000 ° C,” Opt. Express 17(24), 21551–21559 (2009). [CrossRef] [PubMed]
  15. S. H. Aref, R. Amezcua-Correa, J. P. Carvalho, O. Frazão, P. Caldas, J. L. Santos, F. M. Araújo, H. Latifi, F. Farahi, L. A. Ferreira, and J. C. Knight, “Modal interferometer based on hollow-core photonic crystal fiber for strain and temperature measurement,” Opt. Express 17(21), 18669–18675 (2009). [CrossRef]
  16. C. R. Liao, Y. Wang, D. N. Wang, and L. Jin, “Femtosecond Laser Inscribed Long-Period Gratings in All-Solid Photonic Bandgap Fibers,” IEEE Photon. Technol. Lett. 22(6), 425–427 (2010). [CrossRef]
  17. B. Tai, Z. Wang, Y. Liu, J. Xu, B. Liu, H. Wei, and W. Tong, “High order resonances between core mode and cladding supermodes in long period fiber gratings inscribed in photonic bandgap fibers,” Opt. Express 18(15), 15361–15370 (2010). [CrossRef] [PubMed]
  18. L. Jin, Z. Wang, Y. Liu, G. Kai, and X. Dong, “Ultraviolet-inscribed long period gratings in all-solid photonic bandgap fibers,” Opt. Express 16(25), 21119–21131 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited