OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 8379–8393

Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology

Min-Suk Kwon  »View Author Affiliations


Optics Express, Vol. 19, Issue 9, pp. 8379-8393 (2011)
http://dx.doi.org/10.1364/OE.19.008379


View Full Text Article

Enhanced HTML    Acrobat PDF (2134 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Metal-insulator-silicon-insulator-metal (MISIM) waveguides are proposed and investigated theoretically. They are hybrid plasmonic waveguides, and light is highly confined to the insulator between the metal and silicon. As compared to previous ones, they are advantageous since they may be realized in a simple way by using current standard CMOS technology and their insulator is easily replaceable without affecting the metal and silicon. First, their structure and fabrication process are explained, both of which are compatible with standard CMOS technology. Then, the characteristics of the single MISIM waveguide whose insulator has its original or an adjusted refractive index are analyzed. The analysis demonstrates that its characteristics are comparable to those of previous hybrid plasmonic waveguides and that they are very effectively tuned by changing the refractive index of the insulator. Finally, the characteristics of the two coupled MISIM waveguides are analyzed. Through the analysis, it is obtained how close or far apart they are for efficient power transfer or low crosstalk. MISIM-waveguide-based devices may play an important role in connecting Si-based photonic and electronic circuits.

© 2011 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(220.4241) Optical design and fabrication : Nanostructure fabrication
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Integrated Optics

History
Original Manuscript: February 18, 2011
Revised Manuscript: April 12, 2011
Manuscript Accepted: April 14, 2011
Published: April 15, 2011

Citation
Min-Suk Kwon, "Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology," Opt. Express 19, 8379-8393 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-9-8379


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science 328(5977), 440–441 (2010). [CrossRef] [PubMed]
  2. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006). [CrossRef] [PubMed]
  3. Z. Chen, T. Holmgaard, S. I. Bozhevolnyi, A. V. Krasavin, A. V. Zayats, L. Markey, and A. Dereux, “Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides,” Opt. Lett. 34(3), 310–312 (2009). [CrossRef] [PubMed]
  4. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett. 94(5), 051111 (2009). [CrossRef]
  5. J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96(6), 063105 (2010). [CrossRef]
  6. J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95(1), 013504 (2009). [CrossRef]
  7. Z. Han, A. Y. Elezzabi, and V. Van, “Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform,” Opt. Lett. 35(4), 502–504 (2010). [CrossRef] [PubMed]
  8. R. Yang, R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Efficient light coupling between dielectric slot waveguide and plasmonic slot waveguide,” Opt. Lett. 35(5), 649–651 (2010). [CrossRef] [PubMed]
  9. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008). [CrossRef]
  10. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009). [CrossRef] [PubMed]
  11. H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010). [CrossRef]
  12. M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18(11), 11728–11736 (2010). [CrossRef] [PubMed]
  13. Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010). [CrossRef] [PubMed]
  14. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18(12), 12971–12979 (2010). [CrossRef] [PubMed]
  15. N.-N. Feng and L. Dal Negro, “Plasmon mode transformation in modulated-index metal-dielectric slot waveguides,” Opt. Lett. 32(21), 3086–3088 (2007). [CrossRef] [PubMed]
  16. D. Dai and S. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express 18(17), 17958–17966 (2010). [CrossRef] [PubMed]
  17. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009) (Although the acronym of MISIM was introduced for the structure of the plasmonic waveguides in this paper, they were called metal-insulator-metal (MIM) waveguides rather than MISIM waveguides. The plasmonic waveguides were intended to confine enough portion of modal energy for lasing to active semiconductor cores.). [CrossRef] [PubMed]
  18. R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low V π L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18(15), 15618–15623 (2010). [CrossRef] [PubMed]
  19. C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010). [CrossRef]
  20. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009). [CrossRef] [PubMed]
  21. E. Jordana, J.-M. Fedeli, L. E. Melhaoui, P. Lyan, J. P. Colonna, N. Daldosso, L. Pavesi, P. Pellegrino, B. Garrido, A. Vila, and Y. Lebour, “Deep-UV lithography fabrication of slot waveguides and sandwiched waveguides for nonlinear applications,” in Proceedings of 2007 4th IEEE International Conference on Group IV Photonics, (Institute of Electrical and Electronics Engineers, Tokyo, 2007), pp. 1–3.
  22. S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography,” J. Lightwave Technol. 27(18), 4076–4083 (2009). [CrossRef]
  23. P. McCann, K. Somasundram, S. Byrne, and A. Nevin, “Conformal deposition of LPCVD TEOS,” Proc. SPIE 4557, 329–340 (2001). [CrossRef]
  24. H. Ishii, S. Yagi, T. Minotani, Y. Royter, K. Kudou, M. Yano, T. Nagatsuma, K. Machida, and H. Kyuragi, “Gold damascene interconnect technology for millimeter-wave photonics on silicon,” Proc. SPIE 4557, 210–219 (2001). [CrossRef]
  25. M. Hauder, J. Gstottner, L. Gao, and D. Schmitt-Landsiedel, “Chemical mechanical polishing of silver damascene structures,” Microelectron. Eng. 64(1-4), 73–79 (2002). [CrossRef]
  26. M. Ronay, “Development of aluminum chemical mechanical planarization,” J. Electrochem. Soc. 148(9), G494–G499 (2001). [CrossRef]
  27. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1998)
  28. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  29. P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005). [CrossRef]
  30. R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” N. J. Phys. 10(10), 105018 (2008). [CrossRef]
  31. J. Homola, “Electromagnetic theory of surface plasmons,” in Surface Plasmon Resonance Based Sensors, J. Homola, ed. (Springer, Berlin, 2006).
  32. T. Waechtler, B. Gruska, S. Zimmermann, S. E. Schulz, and T. Gessner, “Characterization of sputtered Ta and TaN films by spectroscopic ellipsometry,” in Proceedings of 8th International Conference on Solid-State and Integrated Circuit Technology, (Institute of Electrical and Electronics Engineers, Shanghai, China, 2006), pp. 2184–2186.
  33. S. G. Lee, Y. J. Kim, S. P. Lee, H.-S. Oh, S. J. Lee, M. Kim, I.-G. Kim, J.-H. Kim, H.-J. Shin, J.-G. Hong, H.-D. Lee, and H.-K. Kang, “Low dielectric constant 3MS α-SiC:H as Cu diffusion barrier layer in Cu dual damascene process,” Jpn. J. Appl. Phys. 40(Part 1, No. 4B), 2663–2668 (2001). [CrossRef]
  34. Y. Shoji, K. Nakanishi, Y. Sakakibara, K. Kintaka, H. Kawashima, M. Mori, and T. Kamei, “Hydrogenated amorphous silicon carbide optical waveguide for telecommunication wavelength applications,” Appl. Phys. Express 3(12), 122201 (2010). [CrossRef]
  35. G. Veronis and S. Fan, “Crosstalk between three-dimensional plasmonic slot waveguides,” Opt. Express 16(3), 2129–2140 (2008). [CrossRef] [PubMed]
  36. Y. Song, M. Yan, Q. Yang, L.-M. Tong, and M. Qiu, “Reducing crosstalk between nanowire-based hybrid plasmonic waveguides,” Opt. Commun. 284(1), 480–484 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited