OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 8693–8699

Strehl ratios characterizing optical elements designed for presbyopia compensation

K. Petelczyc, J. Ares García, S. Bará, Z. Jaroszewicz, K. Kakarenko, A. Kolodziejczyk, and M. Sypek  »View Author Affiliations


Optics Express, Vol. 19, Issue 9, pp. 8693-8699 (2011)
http://dx.doi.org/10.1364/OE.19.008693


View Full Text Article

Enhanced HTML    Acrobat PDF (1341 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present results of numerical analysis of the Strehl ratio characteristics for the light sword optical element (LSOE). For comparison there were analyzed other optical imaging elements proposed for compensation of presbyopia such as the bifocal lens, the trifocal lens, the stenopeic contact lens, and elements with extended depth of focus (EDOF), such as the logarithmic and quartic axicons. The simulations were based on a human eye’s model being a simplified version of the Gullstrand model. The results obtained allow to state that the LSOE exhibits much more uniform characteristics of the Strehl ratio comparing with other known hitherto elements and therefore it could be a promising aid to compensate for the insufficient accommodation range of the human eye.

© 2011 OSA

OCIS Codes
(080.2740) Geometric optics : Geometric optical design
(100.6890) Image processing : Three-dimensional image processing
(110.2990) Imaging systems : Image formation theory
(220.3620) Optical design and fabrication : Lens system design
(330.4060) Vision, color, and visual optics : Vision modeling
(330.7323) Vision, color, and visual optics : Visual optics, aging changes

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: February 16, 2011
Revised Manuscript: March 11, 2011
Manuscript Accepted: April 4, 2011
Published: April 19, 2011

Virtual Issues
Vol. 6, Iss. 5 Virtual Journal for Biomedical Optics

Citation
K. Petelczyc, J. Ares García, S. Bará, Z. Jaroszewicz, K. Kakarenko, A. Kolodziejczyk, and M. Sypek, "Strehl ratios characterizing optical elements designed for presbyopia compensation," Opt. Express 19, 8693-8699 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-9-8693


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Artal and J. Tabernero, “Optics of human eye: 400 years of exploration from Galileo’s time,” Appl. Opt. 49(16), D123–D130 (2010). [CrossRef] [PubMed]
  2. B. K. Pierscionek, “What we know and understand about presbyopia,” Clin. Exp. Optom. 76(3), 83–90 (1993). [CrossRef]
  3. A. Glasser, M. A. Croft, and P. L. Kaufman, “Aging of the human crystalline lens and presbyopia,” Int. Ophthalmol. Clin. 41(2), 1–15 (2001). [CrossRef] [PubMed]
  4. A. W. Lohmann and D. P. Paris, “Variable Fresnel zone pattern,” Appl. Opt. 6(9), 1567–1570 (1967). [CrossRef] [PubMed]
  5. A. Kolodziejczyk and Z. Jaroszewicz, “Diffractive elements of variable optical power and high diffraction efficiency,” Appl. Opt. 32(23), 4317–4322 (1993). [CrossRef] [PubMed]
  6. A. N. Simonov, G. Vdovin, and M. C. Rombach, “Cubic optical elements for an accommodative intraocular lens,” Opt. Express 14(17), 7757–7775 (2006). [CrossRef] [PubMed]
  7. A. N. Simonov, G. Vdovin, and M. Loktev, “Liquid-crystal intraocular adaptive lens with wireless control,” Opt. Express 15(12), 7468–7478 (2007). [CrossRef] [PubMed]
  8. G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006). [CrossRef] [PubMed]
  9. G. Li, P. Valley, P. Äyräs, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007). [CrossRef]
  10. R. Menapace, O. Findl, K. Kriechbaum, and Ch. Leydolt-Koeppl, “Accommodating intraocular lenses: a critical review of present and future concepts,” Graefes Arch. Clin. Exp. Ophthalmol. 245(4), 473–489 (2007). [CrossRef]
  11. W. Zhang, K. Aljasem, H. Zappe, and A. Seifert, “Completely integrated, thermo-pneumatically tunable microlens,” Opt. Express 19(3), 2347–2362 (2011). [CrossRef] [PubMed]
  12. W. Qiao, D. Johnson, F. S. Tsai, S. H. Cho, and Y.-H. Lo, “Bio-inspired accommodating fluidic intraocular lens,” Opt. Lett. 34(20), 3214–3216 (2009). [CrossRef] [PubMed]
  13. H. Lesiewska-Junk and J. Kałuzny, “Intraocular lens movement and accommodation in eyes of young patients,” J. Cataract Refract. Surg. 26(4), 562–565 (2000). [CrossRef] [PubMed]
  14. O. Findl, B. Kiss, V. Petternel, R. Menapace, M. Georgopoulos, G. Rainer, and W. Drexler, “Intraocular lens movement caused by ciliary muscle contraction,” J. Cataract Refract. Surg. 29(4), 669–676 (2003). [CrossRef] [PubMed]
  15. J. A. Davison and M. J. Simpson, “History and development of the apodized diffractive intraocular lens,” J. Cataract Refract. Surg. 32(5), 849–858 (2006). [CrossRef] [PubMed]
  16. B. Żelichowska, M. Rękas, A. Stankiewicz, A. Cerviño, and R. Montés-Micó, “Apodized diffractive versus refractive multifocal intraocular lenses: optical and visual evaluation,” J. Cataract Refract. Surg. 34(12), 2036–2042 (2008). [CrossRef] [PubMed]
  17. P. J. Valle, J. E. Oti, V. F. Canales, and M. P. Cagigal, “Visual axial PSF of diffractive trifocal lenses,” Opt. Express 13(7), 2782–2792 (2005). [CrossRef] [PubMed]
  18. J. Sochacki, A. Kołodziejczyk, Z. Jaroszewicz, and S. Bara, “Nonparaxial design of generalized axicons,” Appl. Opt. 31(25), 5326–5330 (1992). [CrossRef] [PubMed]
  19. W. Chi and N. George, “Electronic imaging using a logarithmic asphere,” Opt. Lett. 26(12), 875–877 (2001). [CrossRef]
  20. J. Ares, R. Flores, S. Bara, and Z. Jaroszewicz, “Presbyopia compensation with a quartic axicon,” Optom. Vis. Sci. 82(12), 1071–1078 (2005). [CrossRef] [PubMed]
  21. E. R. Dowski, Jr., andW. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34(11), 1859–1866 (1995). [CrossRef] [PubMed]
  22. A. Kolodziejczyk, S. Bara, Z. Jaroszewicz, and M. Sypek, “The light sword optical element – a new diffraction structure with extended depth of focus,” J. Mod. Opt. 37(8), 1283–1286 (1990). [CrossRef]
  23. G. Mikuła, Z. Jaroszewicz, A. Kolodziejczyk, K. Petelczyc, and M. Sypek, “Imaging with extended focal depth by means of lenses with radial and angular modulation,” Opt. Express 15(15), 9184–9193 (2007). [CrossRef] [PubMed]
  24. J. Ares García, S. Bará, M. Gomez García, Z. Jaroszewicz, A. Kolodziejczyk, and K. Petelczyc, “Imaging with extended focal depth by means of the refractive light sword optical element,” Opt. Express 16(22), 18371–18378 (2008). [CrossRef] [PubMed]
  25. K. Petelczyc, J. Ares Garcia, S. Bará, Z. Jaroszewicz, A. Kolodziejczyk, and M. Sypek, “Presbyopia compensation with a light sword optical element of a variable diameter,” Phot. Lett. Poland 1, 55–57 (2009).
  26. A. Valberg, Light Vision Color (John Wiley & Sons, 2005).
  27. H. Gross, F. Blechinger, and B. Achtner, Handbook of Optical Systems, Vol. 4, Survey of Optical Instruments (Wiley-VCH, 2008).
  28. M. Sypek, “Light propagation in the Fresnel region. New numerical approach,” Opt. Commun. 116(1-3), 43–48 (1995). [CrossRef]
  29. M. Sypek, C. Prokopowicz, and M. Gorecki, “Image multiplying and high-frequency oscillations effects in the Fresnel region light propagation simulation,” Opt. Eng. 42(11), 3158–3164 (2003). [CrossRef]
  30. S. Wittenberg, “Pinhole eyewear systems: a special report,” J. Am. Optom. Assoc. 64(2), 112–116 (1993). [PubMed]
  31. J. L. Breger, “Pinhole presbyopic contact lenses,” US Patent 6,283,595 (April 04 2001).
  32. J. T. De Carle, “Bifocal contact lenses,” US Patent 4,704,016 (March 11 1987).
  33. J. H. Roffman, T. R. Poling, and M. Guillon, “Pupil-tuned multifocal ophthalmic lens,” US Patent 5,448,312 (May 09 1995).
  34. V. Mahajan, Aberration theory made simple, (SPIE Press, 1991).
  35. B. W. Wang and K. J. Ciuffreda, “Depth-of-focus of the human eye: theory and clinical implications,” Surv. Ophthalmol. 51(1), 75–85 (2006). [CrossRef] [PubMed]
  36. D. R. Williams, G. Y. Yoon, A. Guirao, H. Hofer, and J. Porter, “How far can we extend the limits of human vision,” in Customized corneal ablation: the quest for super vision, S.M. MacRae, R.R. Krueger, and R.A. Applegate, eds. (Slack, 2001), pp.11–32.
  37. P. Artal, “Aging effects on the optics of the eye,” in Age-Related Changes of the Human Eye (Aging Medicine), C.A.P. Cavallotti and L. Cerulli, eds. (Humana Press Inc., 2008), pp.35–44.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited