OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 8721–8727

Sub-wavelength bolometers: Uncooled platinum wires as infrared sensors

Pauline Renoux, Sigurdur Ægir Jónsson, Levente J. Klein, Hendrik F. Hamann, and Snorri Ingvarsson  »View Author Affiliations

Optics Express, Vol. 19, Issue 9, pp. 8721-8727 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (697 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present characterization results of microscopic platinum wires as bolometers. The wire lengths range from 16 μm down to 300 nm. Thus they are in many cases significantly smaller in size than the wavelength of the radiation from the 1200 K blackbody source they were exposed to. We observe a steep rise in both responsivity ℜ and detectivity D* with decreasing wire size, reaching ℜ = 3.1×104 V/W and D* = 2.7×109 cmHz1/2/W at room temperature for a 300×300 nm2 device. Two significant advantages of such small wires as bolometers are their low power requirement and fast response time. Our numerical estimations suggest response times in the order of nanoseconds for the smallest samples. They could help improve resolution and response of thermal imaging devices, for example. We believe the performance may be further improved by optimizing the design and operating parameters.

© 2011 OSA

OCIS Codes
(040.6808) Detectors : Thermal (uncooled) IR detectors, arrays and imaging
(310.6845) Thin films : Thin film devices and applications

ToC Category:

Original Manuscript: March 9, 2011
Revised Manuscript: April 3, 2011
Manuscript Accepted: April 9, 2011
Published: April 19, 2011

Virtual Issues
Vol. 6, Iss. 5 Virtual Journal for Biomedical Optics

Pauline Renoux, Sigurdur Ægir Jónsson, Levente J. Klein, Hendrik F. Hamann, and Snorri Ingvarsson, "Sub-wavelength bolometers: Uncooled platinum wires as infrared sensors," Opt. Express 19, 8721-8727 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron. 27, 59–210 (2003). [CrossRef]
  2. E. N. Grossman, J. A. Koch, C. D. Reintsema, and A. Green, “Lithographic dipole antenna properties at 10 μm wavelength: comparison of methods-of-moments predictions with experiment,” Int. J. Infrared Millim. Waves 19, 817–825 (1998). [CrossRef]
  3. I. Codreanu, F. J. González, and G. D. Boreman, “Detection mechanisms in microstrip dipole antenna-coupled infrared detectors,” Infrared Phys. Technol. 44, 155–163 (2003). [CrossRef]
  4. F. J. González and G. D. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46, 418–428 (2005). [CrossRef]
  5. F. J. González, B. Illic, and G. D. Boreman, “Antenna-coupled microbolometers on a silicon-nitride membrane,”Microwave Opt. Technol. Lett. 47, 546–548 (2005). [CrossRef]
  6. F. J. González, C. S. Ashley, P. G. Clem, and G. D. Boreman, “Antenna-coupled microbolometer arrays with aerogel thermal isolation,” Infrared Phys. Technol. 45, 47–51 (2004). [CrossRef]
  7. S. Ingvarsson, L. J. Klein, Y.-Y. Au, J. A. Lacey, and H. F. Hamann, “Enhanced thermal emission from individual antenna-like nanoheaters,” Opt. Express 15, 11249–11254 (2007). [CrossRef] [PubMed]
  8. Y.-Y. Au, H. S. Skulason, S. Ingvarsson, L. J. Klein, and H. F. Hamann, “Thermal radiation spectra of individual subwavelength microheaters,” Phys. Rev. B 78, 085402 (2008). [CrossRef]
  9. A. Kosarev, M. Moreno, A. Torres, and C. Zuniga, “IR sensors based on silicon-germanium-boron alloys deposited by plasma: fabrication and characterization,” J. Non-Cryst. Solids 354, 2561–2564 (2008). [CrossRef]
  10. C. Chen, X. Yi, X. Zhao, and B. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators, A 90, 212–214 (2001). [CrossRef]
  11. R. Smith, F. Jones, and R. Chasmar, The Detection and Measurement of Infra-red Radiation (Oxford Univ. Press, 1957).
  12. S. Kogan, Electronic Noise and Fluctuations in Solids (Cambridge Univ. Press, 1996). [CrossRef]
  13. D. Fleetwood, J. Masden, and N. Giordano, “1/f Noise in platinum films and ultrathin platinum wires: evidence for a common, bulk origin,” Phys. Rev. Lett. 50, 450–453 (1983). [CrossRef]
  14. S. Sedky, P. Fiorini, K. Baert, L. Hermans, and R. Mertens, “Characterization and optimization of infrared poly SiGe bolometers,” IEEE Trans. Electron Devices 46, 675–681 (1999). [CrossRef]
  15. R. Lu, Z. Li, G. Xu, and J. Wu, “Suspending single-wall carbon nanotube thin film infrared bolometers,” Appl. Phys. Lett. 94, 163110 (2009). [CrossRef]
  16. S. Æ. Jónsson, “Nonlinear thermal electric analysis of platinum microheaters,” Master’s thesis, University of Iceland (2009).
  17. H. F. Hamann, J. A. Lacey, and S. Ingvarsson, “Progress towards a thermally driven, infra-red near-field source using nanoheaters,” J. Microsc. 229, 512–516 (2008). [CrossRef] [PubMed]
  18. L. J. Klein, S. Ingvarsson, and H. F. Hamann, “Changing the emission of polarized thermal radiation from metallic nanoheaters,” Opt. Express 17, 17963–17969 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited