OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 8888–8902

Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration

Shiyang Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong  »View Author Affiliations


Optics Express, Vol. 19, Issue 9, pp. 8888-8902 (2011)
http://dx.doi.org/10.1364/OE.19.008888


View Full Text Article

Enhanced HTML    Acrobat PDF (1604 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Horizontal metal/insulator/Si/insulator/metal nanoplasmonic slot waveguide (PWG), which is inserted in a conventional Si wire waveguide, is fabricated using the standard Si-CMOS technology. A thin insulator between the metal and the Si core plays a key role: it not only increases the propagation distance as the theoretical prediction, but also prevents metal diffusion and/or metal-Si reaction. Cu-PWGs with the Si core width of ~134–21 nm and ~12-nm-thick SiO2 on each side exhibit a relatively low propagation loss of ~0.37–0.63 dB/µm around the telecommunication wavelength of 1550 nm, which is ~2.6 times smaller than the Al-counterparts. A simple tapered coupler can provide an effective coupling between the PWG and the conventional Si wire waveguide. The coupling efficiency as high as ~0.1–0.4 dB per facet is measured. The PWG allows a sharp bending. The pure bending loss of a Cu-PWG direct 90° bend is measured to be ~0.6–1.0 dB. These results indicate the potential for seamless integration of various functional nanoplasmonic devices in existing Si electronic photonic integrated circuits (Si-EPICs).

© 2011 OSA

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(250.5300) Optoelectronics : Photonic integrated circuits
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Integrated Optics

History
Original Manuscript: February 18, 2011
Revised Manuscript: March 16, 2011
Manuscript Accepted: March 16, 2011
Published: April 22, 2011

Citation
Shiyang Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, "Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration," Opt. Express 19, 8888-8902 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-9-8888


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008). [CrossRef]
  2. S. I. Bozhevolnyi, Plasmonic nanoguides and circuits (Pan Stanford Publishing, 2009).
  3. R. F. Oulton, G. Bartal, D. F. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” N. J. Phys. 10(10), 105018 (2008). [CrossRef]
  4. G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” IEEE J. Lightwave Technol. 25(9), 2511–2521 (2007). [CrossRef]
  5. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006). [CrossRef]
  6. L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31(14), 2133–2135 (2006). [CrossRef] [PubMed]
  7. G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15(3), 1211–1221 (2007). [CrossRef] [PubMed]
  8. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008). [CrossRef]
  9. R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Sel. Top. Quant. 14(6), 1496–1501 (2008). [CrossRef]
  10. N. N. Feng, M. L. Brongersma, and L. D. Negro, “Metal-dielectric slot waveguide structures for the propagation of surface plasmon polaritons at 1.55 µm,” IEEE J. Quantum Electron. 43(6), 479–485 (2007). [CrossRef]
  11. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009). [CrossRef] [PubMed]
  12. Z. Han, A. Y. Elezzabi, and V. Van, “Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform,” Opt. Lett. 35(4), 502–504 (2010). [CrossRef] [PubMed]
  13. D. J. Dikken, M. Spasenovic, E. Verhagen, D. van Oosten, and L. K. Kuipers, “Characterization of bending losses for curved plasmonic nanowire waveguides,” Opt. Express 18(15), 16112–16119 (2010). [CrossRef] [PubMed]
  14. S. Sederberg, V. Van, and A. Y. Elezzabi, “Monolithic integration of plasmonic waveguides into a complimentary metal-oxide-semiconductor- and photonic-compatible platform,” Appl. Phys. Lett. 96(12), 121101 (2010). [CrossRef]
  15. J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95(1), 013504 (2009). [CrossRef]
  16. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009). [CrossRef] [PubMed]
  17. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators,” Opt. Express 18(26), 27802–27819 (2010). [CrossRef]
  18. A. V. Krasavin and A. V. Zayats, “Silicon-based plasmonic waveguides,” Opt. Express 18(11), 11791–11799 (2010). [CrossRef] [PubMed]
  19. C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010). [CrossRef] [PubMed]
  20. I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett. 97(14), 141106 (2010). [CrossRef]
  21. J. W. Peng, S. J. Lee, G. C. A. Liang, N. Singh, S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Improved carrier injection in gate-all-around Schottky barrier silicon nanowire field-effect transistors,” Appl. Phys. Lett. 93(7), 073503 (2008). [CrossRef]
  22. S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98(2), 021107 (2011). [CrossRef]
  23. http://refractiveindex.info
  24. C. Y. Chang, and S. M. Sze, ULSI technology (McGraw-Hill Book Co. Ltd., 2000).
  25. M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22(14), 143201 (2010). [CrossRef]
  26. http://www.rsoftinc.com
  27. S. Y. Zhu, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Propagation losses in undoped and n-doped polycrystalline silicon wire waveguides,” Opt. Express 17(23), 20891–20899 (2009). [CrossRef] [PubMed]
  28. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability,” Opt. Express 18(24), 25283–25291 (2010). [CrossRef] [PubMed]
  29. T. Barwicz, C. W. Holzwarth, P. T. Rakick, M. A. Popović, E. P. Ippen, and H. I. Smith, “Optical loss in silicon microphotonic waveguides induced by metallic contamination,” Appl. Phys. Lett. 92(13), 131108 (2008). [CrossRef]
  30. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited