OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 19, Iss. S1 — Jan. 3, 2011
  • pp: A20–A27

A light-trapping structure based on Bi2O3 nano-islands with highly crystallized sputtered silicon for thin-film solar cells

Qiang Hu, Jian Wang, Yong Zhao, and Dejie Li  »View Author Affiliations

Optics Express, Vol. 19, Issue S1, pp. A20-A27 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2252 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Silicon films with light-trapping structures are fabricated based on Bi2O3 nano-islands, which are obtained by annealing Bi nano-islands in the air at 400°C. The topography exhibits the maximum altitude of over 600nm and the root-mean-square roughness of 150nm, with the lateral size of single island of about 1μm. Highly crystallized sputtered silicon, realized by Cu-induced crystallization, is used to be a light-absorbing layer. Reflectivity of the samples with different thickness of silicon has been studied to reveal the light-trapping efficiency. The average reflectivity under AM1.5 illumination spectrum is 12% when silicon is 480nm thick and the reflectivity for the long wavelength region between 800nm and 1100nm is less than 10% when the silicon is 1.2μm thick. This is a promising low-cost structure for crystallized silicon thin-film solar cells with high efficiency.

© 2010 OSA

OCIS Codes
(300.1030) Spectroscopy : Absorption
(310.6860) Thin films : Thin films, optical properties
(350.6050) Other areas of optics : Solar energy
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: September 27, 2010
Revised Manuscript: November 10, 2010
Manuscript Accepted: November 10, 2010
Published: November 19, 2010

Qiang Hu, Jian Wang, Yong Zhao, and Dejie Li, "A light-trapping structure based on Bi2O3 nano-islands with highly crystallized sputtered silicon for thin-film solar cells," Opt. Express 19, A20-A27 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. D. Maycock, “PV review: World Solar PV market continues explosive growth,” Refocus 6(5), 18–22 (2005). [CrossRef]
  2. M. J. McCann, K. R. Catchpole, K. J. Weber, and A. W. Blakers, “A review of thin-film crystalline silicon for solar cell applications. Part 2: Foreign substrates,” Sol. Energy Mater. Sol. Cells 68, 135–171 (2001). [CrossRef]
  3. R. W. Birkmire, “Compound polycrystalline solar cells: Recent progress and Y2 K perspective,” Sol. Energy Mater. Sol. Cells 65(1-4), 17–28 (2001). [CrossRef]
  4. T. Ameri, G. Dennler, C. Lungenschmied, and C. J. Brabec, “Organic tandem solar cells: A review,” Energy Environ. Sci. 2(4), 347 (2009). [CrossRef]
  5. B. Li, L. Wang, B. Kang, P. Wang, and Y. Qiu, “Review of recent progress in solid-state dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells 90(5), 549–573 (2006). [CrossRef]
  6. A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics 12(23), 113–142 (2004). [CrossRef]
  7. D. Bonnet, “Manufacturing of CSS CdTe solar cells,” Thin Solid Films 361–362, 547 (2000). [CrossRef]
  8. F. Kessler and D. Rudmann, “Technological aspects of flexible CIGS solar cells and modules,” Sol. Energy 77(6), 685–695 (2004). [CrossRef]
  9. F. Svelto, C. Flores, A. Caon, R. Contini, and E. Rossi, “The Italian activities on GaAs solar cells for space applications: Achieved results and future programmes,” Sol. Energy Mater. Sol. Cells 35, 99–104 (1994). [CrossRef]
  10. D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31(4), 292 (1977). [CrossRef]
  11. J. S. Im, R. S. Sposili, and M. A. Crowder, “Single-crystal Si films for thin-film transistor devices,” Appl. Phys. Lett. 70(25), 3434 (1997). [CrossRef]
  12. M. Miyao, I. Tsunoda, Y. Sadoh, and A. Kenjo, “Ion-beam stimulated solid-phase crystallization of amorphous Si on SiO2,” Thin Solid Films 383(1-2), 104–106 (2001). [CrossRef]
  13. Y. Kawazu, H. Kudo, S. Onari, and T. Arai, “Low-Temperature Crystallization of Hydrogenated Amorphous Silicon Induced by Nickel Suicide Formation,” Jpn. J. Appl. Phys. 29(Part 1, No. 12), 2698–2704 (1990). [CrossRef]
  14. Wenyan Zhang, Dejie Li, and Jian Wang. Phys, “Cu-induced poly-Si/SiO2/a-Si multilayer film with high reflectivity across the whole visible band,” Stat. Solidi RRL 3,82 (2009). [CrossRef]
  15. G. Radnoczi, A. Robertsson, H. T. G. Hentzell, S. F. Gong, and M. A. Hasan, “Al induced crystallization of a-Si,” J. Appl. Phys. 69(9), 6394 (1991). [CrossRef]
  16. S. W. Russell, J. Li, and J. W. Mayer, “In situ observation of fractal growth during a-Si crystallization in a Cu3Si matrix,” J. Appl. Phys. 70(9), 5153 (1991). [CrossRef]
  17. Y. Kawazu, H. Kudo, S. Onari, and T. Arai, “Low-Temperature Crystallization of Hydrogenated Amorphous Silicon Induced by Nickel Suicide Formation,” Jpn. J. Appl. Phys. 29(Part 1 No. 4), 729–738 (1990). [CrossRef]
  18. S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91(24), 243501 (2007). [CrossRef]
  19. J. Xiao, L. Wang, X. Li, X. Pi, and D. Yang, “Reflectivity of porous-pyramids structured silicon surface,” Appl. Surf. Sci. 257(2), 472–475 (2010). [CrossRef]
  20. J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004). [CrossRef]
  21. H. Sai, H. Fujiwara, M. Kondo, and Y. Kanamori, “Enhancement of light trapping in thin-film hydrogenated microcrystalline Si solar cells using back reflectors with self-ordered dimple pattern,” Appl. Phys. Lett. 93(14), 143501 (2008). [CrossRef]
  22. Y.-C. Lee, C.-F. Huang, J.-Y. Chang, and M.-L. Wu, “Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings,” Opt. Express 16(11), 7969–7975 (2008). [CrossRef] [PubMed]
  23. N. M. Sammes, G. A. Tompsett, H. Nafe, and F. Aldingera, “Bismuth Based Oxide Electrolytes-Structure and Ionic Conductivity,” J. Eur. Ceram. Soc. 19(10), 1801–1826 (1999). [CrossRef]
  24. Ch. Ossadnik, S. Veprek, and I. Gregora, “Applicability of Raman scattering for the characterization of nanocrystalline silicon,” Thin Solid Films 337(1-2), 148–151 (1999). [CrossRef]
  25. D. Das and M. Jana, “Hydrogen plasma induced microcrystallization in layer-by-layer growth scheme,” Sol. Energy Mater. Sol. Cells 81(2), 169–181 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited