OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 19, Iss. S1 — Jan. 3, 2011
  • pp: A41–A50

Optical properties of Si microwires combined with nanoneedles for flexible thin film photovoltaics

Kwang-Tae Park, Zhongyi Guo, Han-Don Um, Jin-Young Jung, Jun Mo Yang, Sung Kyu Lim, Young Su Kim, and Jung-Ho Lee  »View Author Affiliations

Optics Express, Vol. 19, Issue S1, pp. A41-A50 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1793 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A combined wire structure, made up of longer periodic Si microwires and short nanoneedles, was prepared to enhance light absorption using one-step plasma etching via lithographical patterning. The combined wire array exhibited light absorption of up to ~97.6% from 300 to 1100 nm without an anti-reflection coating. These combined wire arrays on a Si substrate were embedded into a transparent polymer. A large-scale wire-embedded soft film was then obtained by peeling the polymer-embedded wire portion from the substrate. Optically attractive features were present in these soft films, making them suitable for use in flexible silicon solar cell applications.

© 2010 OSA

OCIS Codes
(080.2740) Geometric optics : Geometric optical design
(160.4760) Materials : Optical properties
(290.4210) Scattering : Multiple scattering
(350.6050) Other areas of optics : Solar energy

ToC Category:

Original Manuscript: September 16, 2010
Revised Manuscript: October 27, 2010
Manuscript Accepted: October 27, 2010
Published: December 6, 2010

Kwang-Tae Park, Zhongyi Guo, Han-Don Um, Jin-Young Jung, Jun Mo Yang, Sung Kyu Lim, Young Su Kim, and Jung-Ho Lee, "Optical properties of Si microwires combined with nanoneedles for flexible thin film photovoltaics," Opt. Express 19, A41-A50 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005). [CrossRef]
  2. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007). [CrossRef] [PubMed]
  3. L. Tsakalakos, J. Balch, J. Fronheiser, M. Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007). [CrossRef]
  4. H. Fang, X. Li, S. Song, Y. Xu, and J. Zhu, “Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications,” Nanotechnology 19(25), 255703 (2008). [CrossRef] [PubMed]
  5. T. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, and S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology 19(29), 295203 (2008). [CrossRef] [PubMed]
  6. J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G. Lo, and D.-L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett. 95, 033102 (2009). [CrossRef]
  7. J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009). [CrossRef]
  8. B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97(11), 114302 (2005). [CrossRef]
  9. L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007). [CrossRef]
  10. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007). [CrossRef] [PubMed]
  11. O. Gunawan and S. Guha, “Characteristics of vapor-liquid-solid grown silicon nanowire solar cells,” Sol. Energy Mater. Sol. Cells 93(8), 1388–1393 (2009). [CrossRef]
  12. S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, and N. S. Lewis, “Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes,” Science 327(5962), 185–187 (2010). [CrossRef] [PubMed]
  13. E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008). [CrossRef] [PubMed]
  14. E. C. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010). [CrossRef] [PubMed]
  15. B. M. Kayes, M. A. Filler, M. D. Henry, J. R. Maiolo, M. D. Kelzenberg, M. C. Putnam, J. M. Spurgeon, K. E. Plass, A. Scherer, N. S. Lewis, and H. A. Atwater, “Radial pn junction, wire array solar cells,” in Proceedings of 33rd IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, San Diego, CA, 2008), pp. 1−5.
  16. H.-D. Um, J.-Y. Jung, X. Li, S.-W. Jee, K.-T. Park, H.-S. Seo, S. A. Moiz, S.-W. Lee, J.-Y. Ji, C. T. Kim, M. S. Hyun, Y. C. Park, J. M. Yang, and J.-H. Lee, “A novel photovoltaic nanodevice based on the co-integration of silicon micro and nanowires prepared by electroless etching with conformal plasma doping,” in Proceeding of the IEEE International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, Baltimore, MD, 2009), pp. 551−554.
  17. J.-Y. Jung, Z. Guo, S.-W. Jee, H.-D. Um, K.-T. Park, and J.-H. Lee, “A strong antireflective solar cell prepared by tapering silicon nanowires,” Opt. Express 18(S3), A286 (2010). [CrossRef] [PubMed]
  18. K. E. Plass, M. A. Filler, J. M. Spurgeon, B. M. Kayes, S. Maldonado, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Flexible polymer-embedded Si wire arrays,” Adv. Mater. 21(3), 325–328 (2009). [CrossRef]
  19. C. Herzinger, B. Johs, W. McGahan, J. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998). [CrossRef]
  20. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006). [CrossRef]
  21. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). [CrossRef] [PubMed]
  22. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008). [CrossRef] [PubMed]
  23. W. Bai, Q. Gan, F. Bartoli, J. Zhang, L. Cai, Y. Huang, and G. Song, “Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells,” Opt. Lett. 34(23), 3725–3727 (2009). [CrossRef] [PubMed]
  24. E. Yablonovitch and G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982). [CrossRef]
  25. W. A. Murray, S. Astilean, and W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B 69(16), 165407 (2004). [CrossRef]
  26. Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, “Transformational plasmon optics,” Nano Lett. 10(6), 1991–1997 (2010). [CrossRef] [PubMed]
  27. R. F. Oulton, D. F. P. Pile, Y. Liu, and X. Zhang, “Scattering of surface plasmon polaritons at abrupt surface interface: Implications for nanoscale cavities,” Phys. Rev. B 76(3), 035408 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited