OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 19, Iss. S2 — Mar. 14, 2011
  • pp: A173–A193

Characterization of large array of plasmonic nanoparticles on layered substrate: dipole mode analysis integrated with complex image method

Mohammad Mahdi Tajdini and Hossein Mosallaei  »View Author Affiliations


Optics Express, Vol. 19, Issue S2, pp. A173-A193 (2011)
http://dx.doi.org/10.1364/OE.19.00A173


View Full Text Article

Enhanced HTML    Acrobat PDF (2083 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, an efficient analytical method for characterizing large array of plasmonic nanoparticles located over planarly layered substrate is introduced. The model is called dipole mode complex image (DMCI) method since the main idea lies in modeling a subwavelength spherical nanoparticle at its electric scattering resonance with an induced electric dipole and representing the electromagnetic (EM) fields of this electric dipole over the layered substrate in terms of finite complex images. The major advantages of the proposed method are its accuracy and rapid calculation in characterizing various kinds of large periodic and aperiodic arrays of nanoparticles on layered substrates. The computational time can be reduced significantly in compared to the traditional methods. The accuracy of the theoretical model is validated through comparison with numerical integration of Sommerfeld integrals. Moreover, the analytical results are compared well with those determined by full-wave finite difference time domain (FDTD) method. To demonstrate the capability of our technique, the performances of large arrays of nanoparticles on layered silicon substrates for efficient sunlight energy incoupling are studied.

© 2011 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(230.4170) Optical devices : Multilayers
(260.2110) Physical optics : Electromagnetic optics
(350.6050) Other areas of optics : Solar energy
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Plasmonics

History
Original Manuscript: December 21, 2010
Revised Manuscript: January 14, 2011
Manuscript Accepted: January 17, 2011
Published: February 17, 2011

Citation
Mohammad Mahdi Tajdini and Hossein Mosallaei, "Characterization of large array of plasmonic nanoparticles on layered substrate: dipole mode analysis integrated with complex image method," Opt. Express 19, A173-A193 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-S2-A173


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metallic/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005). [CrossRef]
  2. S. I. Bozhevolnyi and V. M. Shalaev, “Nanophotonics with surface plasmons Part I,” Photon. Spectra 40, 58–66 (2006).
  3. S. I. Bozhevolnyi and V. M. Shalaev, “Nanophotonics with surface plasmons Part II,” Photon. Spectra 40, 66–72 (2006).
  4. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010). [CrossRef] [PubMed]
  5. A. Hryciw, Y. C. Jun, and M. L. Brongersma, “Plasmonics: Electrifying plasmonics on silicon,” Nat. Mater. 9(1), 3–4 (2010). [CrossRef]
  6. Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B 78(15), 153111 (2008). [CrossRef]
  7. A. Alù and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers,” J. Appl. Phys. 97(9), 094310 (2005). [CrossRef]
  8. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006). [CrossRef] [PubMed]
  9. L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71(23), 235408 (2005). [CrossRef]
  10. D. R. Matthews, H. D. Summers, K. Njoh, S. Chappell, R. Errington, and P. Smith, “Optical antenna arrays in the visible range,” Opt. Express 15(6), 3478–3487 (2007). [CrossRef] [PubMed]
  11. J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B 76(24), 245403 (2007). [CrossRef]
  12. S. Ghadarghadr, Z. Hao, and H. Mosallaei, “Plasmonic array nanoantennas on layered substrates: modeling and radiation characteristics,” Opt. Express 17(21), 18556–18570 (2009). [CrossRef]
  13. A. Rashidi and H. Mosallaei, “Array of plasmonic particles enabling optical near-field concentration: A nonlinear inverse scattering design approach,” Phys. Rev. B 82(3), 035117 (2010). [CrossRef]
  14. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008). [CrossRef]
  15. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007). [CrossRef]
  16. K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008). [CrossRef]
  17. M. M. Tajdini, S. Ghadarghadr, and H. Mosallaei, “Plasmonic nanoparticles manipulating solar systems: a dipole mode-complex image analysis,” presented at 2010 Photonic Metamaterials Plasmonics Conf., 7–9 Jun. 2010.
  18. S. M. Sadeghi, “Plasmonic metaresonances: Molecular resonances in quantum dot–metallic nanoparticle conjugates,” Phys. Rev. B 79(23), 233309 (2009). [CrossRef]
  19. Y. Jin and X. Gao, “Plasmonic fluorescent quantum dots,” Nat. Nanotechnol. 4(9), 571–576 (2009). [CrossRef] [PubMed]
  20. J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88(13), 131109 (2006). [CrossRef]
  21. Y. Lia, H. J. Schluesenerb, and S. Xua, “Gold nanoparticle-based biosensors,” Gold Bull. 43(1), 29–41 (2010). [CrossRef]
  22. Y. Xiao, F. Patolsky, E. Katz, J. F. Hainfeld, and I. Willner, ““Plugging into Enzymes”: nanowiring of redox enzymes by a gold nanoparticle,” Science 299(5614), 1877–1881 (2003). [CrossRef] [PubMed]
  23. J. Liu and Y. Lu, “A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles,” J. Am. Chem. Soc. 125(22), 6642–6643 (2003). [CrossRef] [PubMed]
  24. D. Pacifici, H. J. Lezec, L. A. Sweatlock, R. J. Walters, and H. A. Atwater, “Universal optical transmission features in periodic and quasiperiodic hole arrays,” Opt. Express 16(12), 9222–9238 (2008). [CrossRef] [PubMed]
  25. L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90(5), 055501 (2003). [CrossRef] [PubMed]
  26. R. Dallapiccola, A. Gopinath, F. Stellacci, and L. Dal Negro, “Quasi-periodic distribution of plasmon modes in two-dimensional Fibonacci arrays of metal nanoparticles,” Opt. Express 16(8), 5544–5555 (2008). [CrossRef] [PubMed]
  27. M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization of optics: Quasiperiodic media,” Phys. Rev. Lett. 58(23), 2436–2438 (1987). [CrossRef] [PubMed]
  28. A. Ahmadi, S. Ghadarghadr, and H. Mosallaei, “An optical reflectarray nanoantenna: the concept and design,” Opt. Express 18(1), 123–133 (2010). [CrossRef] [PubMed]
  29. W. C. Chew, Waves and Fields in Inhomogeneous Media, (IEEE Press, 1995).
  30. K. A. Michalski and J. R. Mosig, “Multilayered media Green’s function in integral equation formulations,” IEEE Trans. Antenn. Propag. 45(3), 508–519 (1997). [CrossRef]
  31. M. Paulus, P. Gay-Balmaz, and O. J. F. Martin, “Accurate and efficient computation of the Green’s tensor for stratified media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(44 Pt B), 5797–5807 (2000). [CrossRef] [PubMed]
  32. B. Hu and W. C. Chew, “Fast inhomogeneous plane wave algorithm for scattering from objects above the multilayered medium,” IEEE Trans. Geosci. Rem. Sens. 39(5), 1028–1038 (2001). [CrossRef]
  33. M. M. Tajdini, and A. A. Shishegar, “The Gaussian expansion of the Green’s function of an electric current in a parallel-plate waveguide,” in Proc. IEEE Int. RF Microw. Conf., (2–4 Dec. 2008), pp. 223–225.
  34. M. M. Tajdini and A. A. Shishegar, “A novel analysis of microstrip structures using the Gaussian Green’s function method,” IEEE Trans. Antenn. Propag. 58(1), 88–94 (2010). [CrossRef]
  35. Y. L. Chow, J. J. Yang, D. G. Fang, and G. E. Howard, “A closed form spatial Green’s function for the thick microstrip substrate,” IEEE Trans. Microw. Theory Tech. 39(3), 588–592 (1991). [CrossRef]
  36. J. J. Yang, Y. L. Chow, G. E. Howard, and D. G. Fang, “Complex images of an electric dipole in homogenous and layered dielectrics between two ground planes,” IEEE Trans. Microw. Theory Tech. 40(3), 595–598 (1992). [CrossRef]
  37. M. E. Yavuz, M. I. Aksun, and G. Dural, “Critical study of the problems in discrete complex image method,” in Proc. IEEE Int. Symp. Electromagn. Compat., (11–16 May 2003), 2, pp. 1281–1284.
  38. H. Alaeian and R. Faraji-Dana, “A fast and accurate analysis of 2-D periodic devices using complex images Green’s functions,” J. Lightwave Technol. 27(13), 2216–2223 (2009). [CrossRef]
  39. M. I. Aksun and G. Dural, “Clarification of issues on the closed-form Green’s functions in stratified media,” IEEE Trans. Antenn. Propag. 53(11), 3644–3653 (2005). [CrossRef]
  40. M. I. Aksun, M. E. Yavuz, and G. Dural, “Comments on the problems in DCIM,” in Proc. 2003 IEEE APS Int. Symp. USNC/CNC/URSI North Am. Radio Sci. Meeting Conf., Jun. 22–27, 2003, 673–676.
  41. A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74(3), 033402 (2006). [CrossRef]
  42. S. Ghadarghadr and H. Mosallaei, “Coupled dielectric nanoparticles manipulating metamaterials optical characteristics,” IEEE Trans. NanoTechnol. 8(5), 582–594 (2009). [CrossRef]
  43. P. C. Waterman and N. E. Pedersen, “Electromagnetic scattering by periodic arrays of particles,” J. Appl. Phys. 59(8), 2609–2618 (1986). [CrossRef]
  44. P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D Part. Fields 3(4), 825–839 (1971). [CrossRef]
  45. R. W. Hamming, Numerical Methods for Scientists and Engineers, 2nd ed., (Dover Publications, Inc., 1973).
  46. A. Alparslan, M. I. Aksun, and K. A. Michalski, “Closed-form Green’s functions in planar layered media for all ranges and materials,” IEEE Trans. Microw. Theory Tech. 58(3), 602–613 (2010). [CrossRef]
  47. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited