OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 19, Iss. S3 — May. 9, 2011
  • pp: A303–A311

Controlling Fano lineshapes in plasmon-mediated light coupling into a substrate

P. Spinelli, C. van Lare, E. Verhagen, and A. Polman  »View Author Affiliations


Optics Express, Vol. 19, Issue S3, pp. A303-A311 (2011)
http://dx.doi.org/10.1364/OE.19.00A303


View Full Text Article

Enhanced HTML    Acrobat PDF (1041 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Metal nanoparticles are efficient resonant plasmonic scatterers for light, and, if placed on top of a high-index substrate, can efficiently couple light into the substrate. This coupling, however, strongly depends on particle shape and surrounding environment. We study the effect of particle shape and substrate refractive index on the plasmonic resonances of silver nanoparticles and we systematically relate this to the efficiency of light scattering into a substrate. The light coupling spectra are dominated by Fano resonances for the corresponding dipolar and quadrupolar scattering modes. Varying the particle shape from spherical to cylindrical leads to large shifts in the Fano resonance for the dipolar mode, reducing the light incoupling integrated over the AM1.5 spectral range. Using a dielectric spacer layer, good light coupling is achieved for cylinders in the near-infrared. An asymmetric environment around the particles turns quadrupolar resonances into efficient radiators as well.

© 2011 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Plasmonics

History
Original Manuscript: February 14, 2011
Revised Manuscript: March 18, 2011
Manuscript Accepted: March 21, 2011
Published: April 12, 2011

Citation
P. Spinelli, C. van Lare, E. Verhagen, and A. Polman, "Controlling Fano lineshapes in plasmon-mediated light coupling into a substrate," Opt. Express 19, A303-A311 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-S3-A303


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Mie, “Beitrge zur Optik trber Medien, speziell kolloidaler Metallsungen,” Ann. Phys. 330(3), 377–445 (1908). [CrossRef]
  2. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).
  3. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010). [CrossRef] [PubMed]
  4. H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69(16), 2327–2329 (1996). [CrossRef]
  5. H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815–3817 (1998). [CrossRef]
  6. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005). [CrossRef]
  7. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006). [CrossRef]
  8. P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008). [CrossRef]
  9. K. R. Catchpole and A. Polman, “Design principle for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008) [CrossRef]
  10. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008). [CrossRef] [PubMed]
  11. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 106309 (2007). [CrossRef]
  12. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010). [CrossRef] [PubMed]
  13. C. Hägglund, M. Zch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008). [CrossRef]
  14. Lumerical FDTD Solutions ( www.lumerical.com ).
  15. http://www.lumerical.com/fdtd_online_helpprevious_help/user_guide_tfsf_sources.php .
  16. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  17. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  18. J. Mertz, “Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unified description,” J. Opt. Soc. Am. B 17(11), 1906–1913 (2000). [CrossRef]
  19. F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009). [CrossRef]
  20. G. Xu, M. Tazawa, P. Jin, S. Nakao, and K. Yoshimura, “Wavelength tuning of surface plasmon resonance using dielectric layers,” Appl. Phys. Lett. 82(22), 3811–3813 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited