OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 19, Iss. S3 — May. 9, 2011
  • pp: A312–A318

Broadband UV-to-green photoconversion in V-doped lithium zinc silicate glasses and glass ceramics

Guojun Gao, Robert Meszaros, Mingying Peng, and Lothar Wondraczek  »View Author Affiliations


Optics Express, Vol. 19, Issue S3, pp. A312-A318 (2011)
http://dx.doi.org/10.1364/OE.19.00A312


View Full Text Article

Enhanced HTML    Acrobat PDF (1210 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on photoluminescence of vanadium-doped lithium zinc silicate glasses and corresponding nanocrystalline Li2ZnSiO4 glass ceramics as broadband UV-to-VIS photoconverters. Depending on dopant concentration and synthesis conditions, VIS photoemission from [VO4]3- is centered at 550-590 nm and occurs over a bandwidth (FWHM) of ~250 nm. The corresponding excitation band covers the complete UV-B to UV-A spectral region. In as-melted glasses, the emission lifetime is about 34 μs up to a nominal dopant concentration of 0.5 mol%. In the glass ceramic, it increases to about 45 μs. For higher dopant concentration, a sharp drop in emission lifetime was observed, what is interpreted as a result of concentration quenching. Self-quenching is further promoted by energy transfer to V4+ centers (2Гt42Гt3). Partitioning of vanadium into V5+ and V4+ was examined by electron paramagnetic resonance and X-ray photoelectron spectroscopy. Suppression of V5+-reduction requires careful adjustment of the optical basicity of the host glass and/or synthesis conditions.

© 2011 OSA

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(140.4480) Lasers and laser optics : Optical amplifiers
(160.2540) Materials : Fluorescent and luminescent materials
(160.4670) Materials : Optical materials

ToC Category:
Fluorescent and Luminescent Materials

History
Original Manuscript: February 11, 2011
Revised Manuscript: April 5, 2011
Manuscript Accepted: April 14, 2011
Published: April 18, 2011

Citation
Guojun Gao, Robert Meszaros, Mingying Peng, and Lothar Wondraczek, "Broadband UV-to-green photoconversion in V-doped lithium zinc silicate glasses and glass ceramics," Opt. Express 19, A312-A318 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-S3-A312


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Fujimoto, F. Tanno, K. Izumi, S. Yoshida, S. Miyazaki, M. Shirai, K. Tanaka, Y. Kawabe, and E. Hanamura, “Vanadium-doped MgAl2O4 crystals as white light source,” J. Lumin. 128(3), 282–286 (2008). [CrossRef]
  2. J. El Ghoul, C. Barthou, M. Saadoun, and L. El Mir, “Optical characterization of SiO2/Zn2SiO4:V nanocomposite obtained after the incorporation of ZnO:V nanoparticles in silica host matrix,” J. Phys. Chem. Solids 71(3), 194–198 (2010). [CrossRef]
  3. M. Anpo, I. Tanahashi, and Y. Kubokawa, “Photoluminescence and photoreduction of V2O5 supported on porous vycor glass,” J. Phys. Chem. 84(25), 3440–3443 (1980). [CrossRef]
  4. S. Dzwigaj, M. Matsuoka, M. Anpo, and M. Che, “Evidence of three kinds of tetrahedral vanadium (V) species in VSiß zeolite by diffuse reflectance UV-Visible and photoluminescence spectroscopies,” J. Phys. Chem. B 104(25), 6012–6020 (2000). [CrossRef]
  5. M. Morita, S. Kajiyama, T. Kai, D. Rau, and T. Sakurai, “Physicochemical control of valence in luminescence of Cr(III) and V (III, IV) complexes embedded in xero-gel and sol-gel SiO2 glasses,” J. Lumin. 94–95, 91–95 (2001). [CrossRef]
  6. S. Dzwigaj, J. Krafft, M. Che, S. Lim, and G. L. Haller, “Photoluminescence study of the introduction of V in Si-MSM-41: role of surface defects and their associated SiO- and SiOH groups,” J. Phys. Chem. B 107(16), 3856–3861 (2003). [CrossRef]
  7. areD. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, J. R. Qiu, J. Wang, and L. Wondraczek, “Efficient near-infrared downconversion in GdVO4:Dy3+ phosphors for enhancing the photo response of solar cells,” Sol. Eng. Mat. Sol. Cell (2011), doi:. [CrossRef]
  8. W. Höland and G. H. Beall, Glass Ceramic Technology (American Ceramic Society, 2002).
  9. G. Gao, N. Da, S. Reibstein, and L. Wondraczek, “Enhanced photoluminescence from mixed-valence Eu-doped nanocrystalline silicate glass ceramics,” Opt. Express 18(S4Suppl 4), A575–A583 (2010). [CrossRef] [PubMed]
  10. G. Gao, S. Reibstein, M. Peng, and L. Wondraczek, “Tunable dual-mode photoluminescence from nanocrystalline Eu-doped Li2ZnSiO4 glass ceramics phosphors,” J. Mater. Chem. 21(9), 3156–3161 (2011). [CrossRef]
  11. A. R. West and F. P. Glasser, “Preparation and crystal chemistry of some tetrahedral Li3PO4-type compounds,” J. Solid State Chem. 4(1), 20–28 (1972). [CrossRef]
  12. N. Da, M. Peng, S. Krolikowski, and L. Wondraczek, “Intense red photoluminescence from Mn2+-doped (Na+, Zn2+) sulfophosphate glasses and glass ceramics as LED converters,” Opt. Express 18(3), 2549–2557 (2010). [CrossRef] [PubMed]
  13. Z. B. Kea, A. X. Lub, and G. F. Huang, “Effect of K2O addition on crystallization and microstructure of Li2O-ZnO-Al2O3-SiO2 system glass-ceramics,” Adv. Mater. Res. 11-12, 205–208 (2006). [CrossRef]
  14. Y. Zhuang, Y. Teng, J. Luo, B. Zhu, Y. Chi, E. Wu, H. Zeng, and J. Qiu, “Broadband optical amplification in silicate glass ceramics containing Li2ZnSiO4:Cr4+ nanocrystals,” Appl. Phys. Lett. 95(11), 111913 (2009). [CrossRef]
  15. C. K. Jørgensen, S. Döger, M. Frydman, and L. G. Sillén, “Comparative ligand field studies IV. vandium (IV), titanium (III) and other systems with one d-electron,” Acta Chem. Scand. 11, 73–85 (1957). [CrossRef]
  16. C. J. Ballhausen and H. B. Gray, “The electronic structure of the vanadyl ion,” Inorg. Chem. 1(1), 111–122 (1962). [CrossRef]
  17. W. D. Johnston, “Optical spectra of the various valence states of vanadium in Na2O·2SiO2 glass,” J. Am. Ceram. Soc. 48(12), 608–611 (1965). [CrossRef]
  18. M. Shareefuddin, M. Jamal, G. Ramadevudu, M. Lakshmipati Rao, and M. N. Chary, “Electron paramagnetic resonance spectra of VO2+ ions in NaI-Na2O-K2O-B2O3 mixed alkali glasses,” J. Non-Cryst. Solids 255(2-3), 228–232 (1999). [CrossRef]
  19. L. D. Bogomolova, A. N. Khabarova, E. V. Klimashina, N. A. Krasil'nikova, and V. A. Jachkin, “EPR of V4+ ions in silica glass, 20,” J. Non-Cryst. Solids 103(2-3), 319–324 (1988). [CrossRef]
  20. H. Farah, “An EPR characterization of vanadium in CaO and Na2O based Al2O3-SiO2 glasses,” J. Alloy. Comp. 453(1-2), 288–291 (2008). [CrossRef]
  21. T. Srikumar, C. Srinvasa Rao, Y. Gandhi, N. Venkatramaiah, V. Ravikumar, and N. Veeraiah, “Microstructure, dielectric and spectroscopic properties of Li2O-Nb2O5-ZrO2-SiO2 glass system crystallized with V2O5,” J. Phys. Chem. Solids 72(3), 190–200 (2011), doi:. [CrossRef]
  22. J. A. Duffy, “A review of optical basicity and its applications to oxidic systems,” Geochim. Cosmochim. Acta 57(16), 3961–3970 (1993). [CrossRef]
  23. H. Bach, F. G. K. Baucke, and D. Krause, Electrochemistry of Glasses and Glass Melts, Including Glass Electrodes (Springer-Verlag, 2001). p. 293.
  24. Z. Cheng, R. Xing, Z. Hou, S. Huang, and J. Lin, “Patterning of light-emitting YVO4:Eu3+ thin films via inkjet printing,” J. Phys. Chem. C 114(21), 9883–9888 (2010). [CrossRef]
  25. C. Hsu and R. C. Powell, “Energy transfer in europium doped yttrium vanadate crystals,” J. Lumin. 10(5), 273–293 (1975). [CrossRef]
  26. A. X. Lu, Z. B. Ke, Z. H. Xiao, X. F. Zhang, and X. Y. Li, “Effect of heat-treatmentcondition on crystallization behavior and thermal expansion coefficient of Li2O–ZnO-Al2O3–SiO2–P2O5 glass–ceramics,” J. Non-Cryst. Solids 353(28), 2692–2697 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited