OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 19, Iss. S4 — Jul. 4, 2011
  • pp: A686–A694

High-performance laterally-arranged multiple-bandgap solar cells using spatially composition-graded CdxPb1-xS nanowires on a single substrate: a design study

D. A. Caselli and C. Z. Ning  »View Author Affiliations

Optics Express, Vol. 19, Issue S4, pp. A686-A694 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1153 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, laterally arranged multiple bandgap (LAMB) solar cells based on CdxPb1-xS alloy nanowires of varying composition on a single substrate are designed to be used together with a dispersive concentrator. Simulation results for a design with six subcells in series connection are presented. The design is based on a unique materials capability achieved in our recent research. An efficiency of 34.9% was obtained for operation without solar concentration, which increased to 40.5%, 41.7%, and 42.7% for concentration ratios of 25, 100, and 240 respectively. The device was also simulated with decreased carrier mobilities to model the possible reduction in absorber conductivity, depending on the nanowire geometry and configuration. For a concentration ratio of unity, decreasing the mobilities to 25% of their original values caused less than a 2.5% absolute drop in efficiency. The LAMB design offers the advantages of an integrated cell platform and the potential for low-cost, high efficiency photovoltaic systems.

© 2011 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(350.6050) Other areas of optics : Solar energy

ToC Category:
Solar Concentrators

Original Manuscript: February 9, 2011
Revised Manuscript: May 14, 2011
Manuscript Accepted: May 14, 2011
Published: May 17, 2011

D. A. Caselli and C. Z. Ning, "High-performance laterally-arranged multiple-bandgap solar cells using spatially composition-graded CdxPb1-xS nanowires on a single substrate: a design study," Opt. Express 19, A686-A694 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Green, Third Generation Photovoltaics: Advanced Solar Energy Conversion (Springer-Verlag, 2006).
  2. M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 35),” Prog. Photovolt. Res. Appl. 18(2), 144–150 (2010). [CrossRef]
  3. N. A. Gokcen and J. J. Loferski, “Efficiency of tandem solar cell systems as a function of temperature and solar energy concentration ratio,” Sol. Energy Mater. 1(3-4), 271–286 (1979). [CrossRef]
  4. W. H. Bloss, M. Griesinger, and E. R. Reinhardt, “Dispersive concentrating systems based on transmission phase holograms for solar applications,” Appl. Opt. 21(20), 3739–3742 (1982). [CrossRef] [PubMed]
  5. A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emergy, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, T. Moriarty, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, and N. Shatz, “Milestones toward 50% efficiency solar cell modules,” Presented at the 22nd European Photovoltaic Solar Energy Conference (Institute of Electrical and Electronics Engineers, Milan, Italy, 2007).
  6. A. L. Pan, W. Zhou, E. S. P. Leong, R. B. Liu, A. H. Chin, B. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9(2), 784–788 (2009). [CrossRef] [PubMed]
  7. T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater. 6(12), 951–956 (2007). [CrossRef] [PubMed]
  8. A. L. Pan, R. B. Liu, M. Sun, and C. Z. Ning, “Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate,” ACS Nano 4(2), 671–680 (2010). [CrossRef] [PubMed]
  9. C. Z. Ning, A. L. Pan, and R. B. Liu, “Spatially composition-graded alloy semiconductor nanowires and wavelength specific lateral-multijunction full-spectrum solar cells,” in Proceedings of the 34th IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, Philadelphia, Pennsylvania, 2009), pp. 001492–001495.
  10. J. E. Ludman, J. Riccobono, I. V. Semenova, N. O. Reinhand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martín, “The optimization of a holographic system for solar power generation,” Sol. Energy 60(1), 1–9 (1997). [CrossRef]
  11. J. R. Riccobono, H. J. Caulfield, and J. E. Ludman, Holography for the New Millennium (Springer-Verlag, 2002).
  12. ATLAS, version 5.15.34.C, Silvaco Data Systems, Inc.: 2009.
  13. H. Rahnamai and J. N. Zemel, “PbS – Si heterojunction II: electrical properties,” Thin Solid Films 74(1), 17–22 (1980). [CrossRef]
  14. Z. Liu, J. H. Kim, G. E. Fernandes, and J. Xu, “Room temperature photocurrent response of PbS/InP heterojunction,” Appl. Phys. Lett. 95(23), 231113 (2009). [CrossRef]
  15. ATLAS User’s Manual: Device Simulation Software (SILVACO International, 2007).
  16. T. L. Chu and S. S. Chu, “Thin film II-VI photovoltaics,” Solid-State Electron. 38(3), 533–549 (1995). [CrossRef]
  17. E. Kymakis and G. A. Amaratunga, “Single-wall carbon nanotube/conjugated polymer photovoltaic devices,” Appl. Phys. Lett. 80(1), 112–114 (2002). [CrossRef]
  18. U. V. Desnica, “Doping limits in II-VI compounds – challenges, problems and solutions,” Prog. Cryst. Growth Charact. Mater. 36(4), 291–357 (1998). [CrossRef]
  19. Y. Imai, A. Watanabe, and I. Shimono, “Comparison of electronic structures of doped ZnS and ZnO calculated by a first-principle pseudopotential method,” J. Mater. Sci. Mater. Electron. 14(3), 149–156 (2003). [CrossRef]
  20. H. Ohta, M. Orita, M. Hirano, H. Tanji, H. Kawazoe, and H. Hosono, “Highly electrically conductive indium-tin-oxide thin films epitaxially grown on yttria-stabilized zirconia (100) by pulsed-laser deposition,” Appl. Phys. Lett. 76(19), 2740–2742 (2000). [CrossRef]
  21. A. Mondal, B. E. McCandless, and R. W. Birkmire, “Electrochemical deposition of thin ZnTe films as a contact for CdTe solar cells,” Sol. Energy Mater. Sol. Cells 26(3), 181–187 (1992). [CrossRef]
  22. D. J. Friedman and J. M. Olson, “Analysis of Ge Junctions for GaInP/GaAs/Ge Three-junction Solar Cells,” Prog. Photovolt. Res. Appl. 9(3), 179–189 (2001). [CrossRef]
  23. K. Emery and D. Meyers, “Solar Spectral Irradiance: Air Mass 1.5” (National Renewable Energy Laboratory, 2009). http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html .
  24. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010). [CrossRef] [PubMed]
  25. N. Lagos, M. M. Sigalas, and D. Niarchos, “The optical absorption of nanowire arrays,” Photon. Nanostruct. Fundam. Appl. 9(2), 163–167 (2011), doi:. [CrossRef]
  26. M. M. Sigalas, Institute of Materials Science, N.C.S.R “Demokritos” Agia Paraskevi, 15310 Athens, Greece (personal communication, 2010).
  27. R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP / GaInAs / Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007). [CrossRef]
  28. Z. Fan, J. C. Ho, Z. A. Jacobson, R. Yerushalmi, R. L. Alley, H. Razavi, and A. Javey, “Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing,” Nano Lett. 8(1), 20–25 (2008). [CrossRef]
  29. P. Yang and F. Kim, “Langmuir-Blodgett assembly of one-dimensional nanostructures,” ChemPhysChem 3(6), 503–506 (2002). [CrossRef] [PubMed]
  30. Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited