OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 19, Iss. S4 — Jul. 4, 2011
  • pp: A851–A858

On the interplay of waveguide modes and leaky modes in corrugated OLEDs

Julian Hauss, Tobias Bocksrocker, Boris Riedel, Uli Lemmer, and Martina Gerken  »View Author Affiliations


Optics Express, Vol. 19, Issue S4, pp. A851-A858 (2011)
http://dx.doi.org/10.1364/OE.19.00A851


View Full Text Article

Enhanced HTML    Acrobat PDF (1066 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Bragg gratings incorporated into organic light-emitting diodes (OLEDs) establish a coupling between waveguide modes and useful light (leaky modes). Here we demonstrate that the net coupling direction depends on the OLED stack design. We fabricated two different device structures with gold Bragg gratings. Angle resolved electroluminescence spectra were recorded. For the first device peaks of enhanced emission due to the Bragg grating are observed corresponding to a net energy transfer in direction of the leaky modes. The second device, on the other hand, exhibits dips in the emission spectrum. This reversed direction of energy transfer from the leaky modes to the waveguide modes is explained considering transfer matrix simulations of modal intensity distributions and device emission simulations. An OLED efficiency enhancement is only achieved, if the waveguide mode extraction is dominant.

© 2011 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(050.2770) Diffraction and gratings : Gratings
(230.3670) Optical devices : Light-emitting diodes
(230.7390) Optical devices : Waveguides, planar
(250.3680) Optoelectronics : Light-emitting polymers

ToC Category:
Light-Emitting Diodes

History
Original Manuscript: March 21, 2011
Revised Manuscript: June 1, 2011
Manuscript Accepted: June 3, 2011
Published: June 20, 2011

Citation
Julian Hauss, Tobias Bocksrocker, Boris Riedel, Uli Lemmer, and Martina Gerken, "On the interplay of waveguide modes and leaky modes in corrugated OLEDs," Opt. Express 19, A851-A858 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-S4-A851


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913 (1987). [CrossRef]
  2. R. Friend, R. Gymer, A. Holmes, J. Burroughes, R. Marks, C. Taliani, D. Bradley, D. A. Dos Santos, J. Bredas, M. Lögdlun, and W. R. Salaneck, “Electroluminescence in conjugated polymers,” Nature 397(6715), 121–128 (1999). [CrossRef]
  3. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459(7244), 234–238 (2009). [CrossRef] [PubMed]
  4. S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature 428(6986), 911–918 (2004). [CrossRef] [PubMed]
  5. C. Adachi, M. Baldo, M. E. Thompson, and S. R. Forrest, “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device,” J. Appl. Phys. 90(10), 5048 (2001). [CrossRef]
  6. S. R. Forrest, M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, and M. E. Thompson, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature 395(6698), 151–154 (1998). [CrossRef]
  7. N. C. Greenham, R. H. Friend, and D. D. C. Bradley, “Angular dependence of the emission from a conjugated polymer light-emitting diode: implications for efficiency calculations,” Adv. Mater. 6(6), 491–494 (1994). [CrossRef]
  8. M.-H. Lu and J. C. Sturm, “Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment,” J. Appl. Phys. 91(2), 595 (2002). [CrossRef]
  9. N. K. Patel, S. Cina, and J. H. Burroughes, “High-efficiency organic light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8(2), 346–361 (2002). [CrossRef]
  10. A. Chutinan, K. Ishihara, T. Asano, M. Fujita, and S. Noda, “Theoretical analysis on light-extraction efficiency of organic light-emitting diodes using FDTD and mode-expansion methods,” Org. Electron. 6(1), 3–9 (2005). [CrossRef]
  11. W. L. Barnes, “Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices,” J. Lightwave Technol. 17(11), 2170–2182 (1999). [CrossRef]
  12. G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, “High-external-quantum-efficiency organic light-emitting devices,” Opt. Lett. 22(6), 396–398 (1997). [CrossRef] [PubMed]
  13. S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: Influence of the emitter quantum efficiency,” J. Appl. Phys. 104(12), 123109 (2008). [CrossRef]
  14. H. Greiner, “Light Extraction from Organic Light Emitting Diode Substrates: Simulation and Experiment,” Jpn. J. Appl. Phys. 46(No. 7A), 4125–4137 (2007). [CrossRef]
  15. B. Riedel, J. Hauss, U. Geyer, J. Guetlein, U. Lemmer, and M. Gerken, “Enhancing outcoupling efficiency of indium-tin-oxide-free organic light-emitting diodes via nanostructured high index layers,” Appl. Phys. Lett. 96(24), 243302 (2010). [CrossRef]
  16. B. Riedel, I. Kaiser, J. Hauss, U. Lemmer, and M. Gerken, “Improving the outcoupling efficiency of indium-tin-oxide-free organic light-emitting diodes via rough internal interfaces,” Opt. Express 18(Suppl 4), A631–A639 (2010). [CrossRef] [PubMed]
  17. M. Fujita, K. Ishihara, T. Ueno, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Optical and electrical characteristics of organic light-emitting diodes with two-dimensional photonic crystals in organic/electrode layers,” Jpn. J. Appl. Phys. 44(No. 6A), 3669–3677 (2005). [CrossRef]
  18. J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, “Bragg scattering from periodically microstructured light emitting diodes,” Appl. Phys. Lett. 77(21), 3340 (2000). [CrossRef]
  19. U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys. 104(9), 093111 (2008). [CrossRef]
  20. T.-W. Koh, J.-M. Choi, S. Lee, and S. Yoo, “Optical outcoupling enhancement in organic light-emitting diodes: highly conductive polymer as a low-index layer on microstructured ITO electrodes,” Adv. Mater. 22(16), 1849–1853 (2010). [CrossRef] [PubMed]
  21. Y. Sun and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids,” Nat. Photonics 2(8), 483–487 (2008). [CrossRef]
  22. J. Hauss, B. Riedel, S. Gleiss, U. Geyer, U. Lemmer, and M. Gerken, “Periodic nanostructuring for guided mode extraction in organic light-emitting diodes,” J. Photon. Energy 1, 011012 (2011). [CrossRef]
  23. A. G. Fluxim, SETFOS: Semiconducting emissive thin film optics simulator software, http://www.fluxim.com.
  24. A. Gombert, B. Bläsi, C. Bühler, P. Nitz, J. Mick, W. Hoßfeld, and M. Niggemann, “Some application cases and related manufacturing techniques for optically functional microstructures on large areas,” Opt. Eng. 43(11), 2525–2533 (2004). [CrossRef]
  25. V. Bulović, V. Khalfin, G. Gu, P. Burrows, D. Garbuzov, and S. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited