OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 19, Iss. S4 — Jul. 4, 2011
  • pp: A943–A948

High-efficiency light-emitting diode with air voids embedded in lateral epitaxially overgrown GaN using a metal mask

Chu-Young Cho, Min-Ki Kwon, Il-Kyu Park, Sang-Hyun Hong, Jae-Joon Kim, Seong-Eun Park, Sung-Tae Kim, and Seong-Ju Park  »View Author Affiliations


Optics Express, Vol. 19, Issue S4, pp. A943-A948 (2011)
http://dx.doi.org/10.1364/OE.19.00A943


View Full Text Article

Enhanced HTML    Acrobat PDF (1172 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report high-efficiency blue light-emitting diodes (LEDs) with air voids embedded in GaN. The air void structures were created by the lateral epitaxial overgrowth (LEO) of GaN using a tungsten mask. The optical output power was increased by 60% at an injection current of 20 mA compared with that of conventional LEDs without air voids. The enhancement is attributed to improved internal quantum efficiency because the air voids reduce the threading dislocation and strain in the LEO GaN epilayer. A ray-tracing simulation revealed that the path length of light escaping from the LED with air voids is much shorter because the air voids efficiently change the light path toward the top direction to improve the light extraction of the LED.

© 2011 OSA

OCIS Codes
(230.0230) Optical devices : Optical devices
(230.3670) Optical devices : Light-emitting diodes
(230.4000) Optical devices : Microstructure fabrication
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Light-Emitting Diodes

History
Original Manuscript: March 30, 2011
Revised Manuscript: June 23, 2011
Manuscript Accepted: June 23, 2011
Published: July 1, 2011

Virtual Issues
Optics in LEDS for Lighting (2011) Optics Express

Citation
Chu-Young Cho, Min-Ki Kwon, Il-Kyu Park, Sang-Hyun Hong, Jae-Joon Kim, Seong-Eun Park, Sung-Tae Kim, and Seong-Ju Park, "High-efficiency light-emitting diode with air voids embedded in lateral epitaxially overgrown GaN using a metal mask," Opt. Express 19, A943-A948 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-S4-A943


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. S. Speck and S. J. Rosner, “The role of threading dislocations in the physical properties of GaN and its alloys,” Physica B 273-274, 24–32 (1999). [CrossRef]
  2. F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), R10024–R10027 (1997). [CrossRef]
  3. T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, “Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect,” Appl. Phys. Lett. 73(12), 1691 (1998). [CrossRef]
  4. E. F. Schubert, Light-emitting diodes (Cambridge University Press, Cambridge, U.K., 2003).
  5. H. G. Kim, H. K. Kim, H. Y. Kim, J. H. Ryu, J. H. Kang, N. Han, P. Uthirakumar, and C. H. Hong, “Impact of two-floor air prism arrays as an embedded reflector for enhancing the output power of InGaN/GaN light emitting diodes,” Appl. Phys. Lett. 95(22), 221110 (2009). [CrossRef]
  6. M. H. Lo, P. M. Tu, C. H. Wang, C. W. Hung, S. C. Hsu, Y. J. Cheng, H. C. Kuo, H. W. Zan, S. C. Wang, C. Y. Chang, and S. C. Huang, “High efficiency light emitting diode with anisotropically etched GaN-sapphire interface,” Appl. Phys. Lett. 95(4), 041109 (2009). [CrossRef]
  7. C. F. Lin, C. M. Lin, K. T. Chen, W. C. Huang, M. S. Lin, J. J. Dai, R. H. Jiang, Y. C. Huang, and C. Y. Chang, “Blue light-emitting diodes with a roughened backside fabricated by wet etching,” Appl. Phys. Lett. 95(20), 201102 (2009). [CrossRef]
  8. M. Haino, M. Yamaguchi, H. Miyake, A. Motogaito, K. Hiramatsu, Y. Kawaguchi, N. Sawaki, Y. Iyechika, and T. Maeda, “Buried Tungsten Metal Structure Fabricated by Epitaxial-Lateral-Overgrown GaN via Low-Pressure Metalorganic Vapor Phase Epitaxy,” Jpn. J. Appl. Phys. 39(Part 2, No. 5B), L449–L452 (2000). [CrossRef]
  9. C.-Y. Cho, J.-B. Lee, S.-J. Lee, S.-H. Han, T.-Y. Park, J.-W. Kim, Y. C. Kim, and S.-J. Park, “Improvement of light output power of InGaN/GaN light-emitting diode by lateral epitaxial overgrowth using pyramidal-shaped SiO2.,” Opt. Express 18(2), 1462–1468 (2010). [CrossRef] [PubMed]
  10. O. Nam, M. Bremser, T. S. Zheleva, and R. F. Davis, “Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy,” Appl. Phys. Lett. 71(18), 2638 (1997). [CrossRef]
  11. C. Kisielowski, J. Krüger, S. Ruvimov, T. Suski, J. W. Ager, E. Jones, Z. Liliental-Weber, M. Rubin, E. R. Weber, M. D. Bremser, and R. F. Davis, “Strain-related phenomena in GaN thin films,” Phys. Rev. B Condens. Matter 54(24), 17745–17753 (1996). [CrossRef] [PubMed]
  12. Y. D. Wang, K. Y. Zang, S. J. Chua, S. Tripathy, P. Chen, and C. G. Fonstad, “Nanoair-bridged lateral overgrowth of GaN on ordered nanoporous GaN template,” Appl. Phys. Lett. 87(25), 251915 (2005). [CrossRef]
  13. M. Hao, J. Zhang, X. H. Zhang, and S. Chua, “Photoluminescence studies on InGaN/GaN multiple quantum wells with different degree of localization,” Appl. Phys. Lett. 81(27), 5129 (2002). [CrossRef]
  14. Y. Wang, X. J. Pei, Z. G. Xing, L. W. Guo, H. Q. Jia, H. Chen, and J. M. Zhou, “Effects of barrier growth temperature ramp-up time on the photoluminescence of InGaN/GaN quantum wells,” J. Appl. Phys. 101(3), 033509 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited