OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 19, Iss. S5 — Sep. 12, 2011
  • pp: A1031–A1036

Antireflection effect of femtosecond laser-induced periodic surface structures on silicon

A. Y. Vorobyev and Chunlei Guo  »View Author Affiliations


Optics Express, Vol. 19, Issue S5, pp. A1031-A1036 (2011)
http://dx.doi.org/10.1364/OE.19.0A1031


View Full Text Article

Enhanced HTML    Acrobat PDF (1402 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Following direct femtosecond laser pulse irradiation, we produce a unique grating structure over a large area superimposed by finer nanostructures on a silicon wafer. We study, for the first time, the antireflection effect of this femtosecond laser-induced periodic surface structures (FLIPSSs) in the wavelength range of 250 - 2500 nm. Our study shows that the FLIPSSs suppress both the total hemispherical and specular polarized reflectance of silicon surface significantly over the entire studied wavelength range. The total polarized reflectance of the processed surface is reduced by a factor of about 3.5 in the visible and 7 in the UV compared to an untreated sample. The antireflection effect of the FLIPSS surface is broadband and the suppression stays to the longest wavelength (2500 nm) studied here although the antireflection effect in the infrared is weaker than in the visible. Our FLIPSS structures are free of chemical contamination, highly durable, and easily controllable in size.

© 2011 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(160.0160) Materials : Materials
(160.6000) Materials : Semiconductor materials
(230.4000) Optical devices : Microstructure fabrication
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Materials

History
Original Manuscript: March 18, 2011
Revised Manuscript: June 16, 2011
Manuscript Accepted: June 17, 2011
Published: July 15, 2011

Citation
A. Y. Vorobyev and Chunlei Guo, "Antireflection effect of femtosecond laser-induced periodic surface structures on silicon," Opt. Express 19, A1031-A1036 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-S5-A1031


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett. 43(6), 579–581 (1983). [CrossRef]
  2. P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ radiant modes of periodic micromachined silicon surfaces,” Nature 324(6097), 549–551 (1986). [CrossRef]
  3. P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surfaces. I. Doped silicon: The normal direction,” Phys. Rev. B Condens. Matter 37(18), 10795–10802 (1988). [CrossRef] [PubMed]
  4. P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surfaces. II. Doped silicon: Angular variation,” Phys. Rev. B Condens. Matter 37(18), 10803–10813 (1988). [CrossRef] [PubMed]
  5. T. K. Wang and J. N. Zemel, “Polarized spectral emittance from periodic micromachined surfaces-III. Undoped silicon: the normal direction in shallow lamellar gratings,” Infrared Phys. 32, 477–488 (1991). [CrossRef]
  6. T. K. Wang and J. N. Zemel, “Polarized spectral emittance from periodic micromachined surfaces: IV. Undoped silicon: Normal direction in deep lamellar gratings,” Appl. Opt. 31(6), 732–736 (1992). [CrossRef] [PubMed]
  7. D. H. Raguin and G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt. 32(7), 1154–1167 (1993). [CrossRef] [PubMed]
  8. S. Hava, M. Auslender, and D. Rabinovich, “Operator approach to electromagnetic coupled-wave calculations of lamellar gratings: infrared optical properties of intrinsic silicon gratings,” Appl. Opt. 33(21), 4807–4813 (1994). [CrossRef] [PubMed]
  9. M. Auslender, D. Levy, and S. Hava, “One-dimensional antireflection gratings in (100) silicon: a numerical study,” Appl. Opt. 37(2), 369–373 (1998). [CrossRef] [PubMed]
  10. S. Hava, J. Ivri, and M. Auslender, “Reflection of infrared radiation from lamellar gratings on a silicon wafer,” J. Appl. Phys. 85(11), 7893–7898 (1999). [CrossRef]
  11. D. L. Brundrett, T. K. Gaylord, and E. N. Glytsis, “Polarizing mirror/absorber for visible wavelengths based on a silicon subwavelength grating: design and fabrication,” Appl. Opt. 37(13), 2534–2541 (1998). [CrossRef] [PubMed]
  12. Y. Ono, Y. Kimura, Y. Ohta, and N. Nishida, “Antireflection effect in ultrahigh spatial-frequency holographic relief gratings,” Appl. Opt. 26(6), 1142–1146 (1987). [CrossRef] [PubMed]
  13. R. E. Smith, M. E. Warren, J. R. Wendt, and G. A. Vawter, “Polarization-sensitive subwavelength antireflection surfaces on a semiconductor for 975 nm,” Opt. Lett. 21(15), 1201–1203 (1996). [CrossRef] [PubMed]
  14. J. F. Young, J. F. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983). [CrossRef]
  15. F. Costache, S. Kouteva-Arguirova, and J. Reif, “Sub–damage–threshold femtosecond laser ablation from crystalline Si: surface nanostructures and phase transformation,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1429–1432 (2004).
  16. R. Le Harzic, H. Schuck, D. Sauer, T. Anhut, I. Riemann, and K. König, “Sub-100 nm nanostructuring of silicon by ultrashort laser pulses,” Opt. Express 13(17), 6651–6656 (2005). [CrossRef] [PubMed]
  17. J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecondlaser pulses,” J. Appl. Phys. 106(10), 104910 (2009). [CrossRef]
  18. G. A. Martsinovsky, G. D. Shandybina, Yu. S. Dement’eva, R. V. Dyukin, S. V. Zabotnov, L. A. Golovan, and P. K. Kashkarov, “Generation of surface electromagnetic waves in semiconductors under the action of femtosecond laser pulses,” Semiconductors 43(10), 1298–1304 (2009). [CrossRef]
  19. A. Y. Vorobyev, V. S. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007). [CrossRef]
  20. A. Y. Vorobyev and C. Guo, “Spectral and polarization responses of femtosecond laser-induced periodic surface structures on metals,” J. Appl. Phys. 103(4), 043513 (2008). [CrossRef]
  21. F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field,” Opt. Commun. 237(4–6), 379–388 (2004). [CrossRef]
  22. M. Auslender and S. Hava, “Zero infrared reflectance anomaly in doped silicon lamellar gratings. I. From antireflection to total absorption,” Infrared Phys. Technol. 36(7), 1077–1088 (1995). [CrossRef]
  23. Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007). [CrossRef] [PubMed]
  24. D. H. Raguin and G. M. Morris, “Analysis of antireflection-structured surfaces with continuous one-dimensional surface profiles,” Appl. Opt. 32(14), 2582–2598 (1993). [CrossRef] [PubMed]
  25. E. N. Glytsis and T. K. Gaylord, “High-spatial-frequency binary and multilevel stairstep gratings: polarization-selective mirrors and broadband antireflection surfaces,” Appl. Opt. 31(22), 4459–4470 (1992). [CrossRef] [PubMed]
  26. F. Ghmari, T. Ghbara, M. Laroche, R. Carminati, and J. J. Greffet, “Influence of microroughness on emissivity,” J. Appl. Phys. 96(5), 2656–2664 (2004). [CrossRef]
  27. C. Lee, S. Y. Bae, S. Mobasser, and H. Manohara, “A novel silicon nanotips antireflection surface for the micro Sun sensor,” Nano Lett. 5(12), 2438–2442 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited