OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 19, Iss. S5 — Sep. 12, 2011
  • pp: A1057–A1066

Optical and electrical study of core-shell silicon nanowires for solar applications

Zhenhua Li, Jian Wang, Navab Singh, and Sungjoo Lee  »View Author Affiliations

Optics Express, Vol. 19, Issue S5, pp. A1057-A1066 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (643 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work, we report a CMOS comparable fabrication process of core-shell SiNW solar cell from single-crystalline p-type Si(100) test wafers. Optical lithography defined plasma etching was used to form highly ordered vertical SiNW arrays, which display a drastic reduction in optical reflectance over a wide range of wavelengths. BF2 and P ion implantations were employed for producing a sharp and shallow radial p-n junction. Under AM 1.5G illumination, the device demonstrates a short circuit current density (Jsc ) of 14.2 mA/cm2, an open circuit voltage (Voc ) of 0.485 V and a fill factor (FF) of 42.9%, giving a power conversion efficiency (PCE) of 2.95%. The Jsc observed is 52% higher than that in the control device with planar Si p-n junction, indicating significant enhancement in carrier generation and collection efficiency from the core-shell structure. Impact of series resistance (Rs ) is also studied, highlighting potential improvement of PCE to 4.40% in the absence of Rs . With top contact optimized, PCE could further increase to 6.29%.

© 2011 OSA

OCIS Codes
(250.0250) Optoelectronics : Optoelectronics
(350.6050) Other areas of optics : Solar energy

ToC Category:

Original Manuscript: April 21, 2011
Revised Manuscript: May 24, 2011
Manuscript Accepted: May 30, 2011
Published: July 15, 2011

Zhenhua Li, Jian Wang, Navab Singh, and Sungjoo Lee, "Optical and electrical study of core-shell silicon nanowires for solar applications," Opt. Express 19, A1057-A1066 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. S. Dresselhaus and I. L. Thomas, “Alternative energy technologies,” Nature 414(6861), 332–337 (2001). [CrossRef] [PubMed]
  2. M. Grätzel, “Photoelectrochemical cells,” Nature 414(6861), 338–344 (2001). [CrossRef] [PubMed]
  3. G. Goncher, and R. Solanki, “Semiconductor nanowire photovoltaics,” Proc. SPIE 7047, 70470L–1 – 70470L–14 (2008).
  4. L. Tsakalakos, J. Balch, J. Fronheiser, M. Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1, 013552 (2007). [CrossRef]
  5. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010). [CrossRef] [PubMed]
  6. B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n Junction nanorod solarc,” J. Appl. Phys. 97, 114302 (2005). [CrossRef]
  7. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007). [CrossRef] [PubMed]
  8. L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91, 233117 (2007). [CrossRef]
  9. M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic measurements in single-nanowire silicon solar cells,” Nano Lett. 8(2), 710–714 (2008). [CrossRef] [PubMed]
  10. Th. Stelzner, M. Pietsch, G. Andra, F. Falk, E. Ose, and S. Christianse, “Silicon nanowire-based solar cells,” Nanotechnology 19, 295203 (2008). [CrossRef] [PubMed]
  11. K. Peng, X. Wang, and S. T. Lee, “Silicon nanowire array photoelectrochemical solar cells,” Appl. Phys. Lett. 92, 163103 (2008). [CrossRef]
  12. E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008). [CrossRef] [PubMed]
  13. X. Wang, K. L. Pey, C. H. Yip, E. A. Fitzgerald, and D. A. Antoniadis, “Vertically arrayed Si nanowire/nanorod-based core-shell p-n junction solar cell,” J. Appl. Phys. 108, 124303 (2010). [CrossRef]
  14. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010). [CrossRef] [PubMed]
  15. M. A. Green, A. W. Blakers, J. Shi, E. M. Keller, and S. R. Wenham, “High-efficiency silicon solar cells,” IEEE Trans. Electron. Dev. 31(5), 679–683 (1984). [CrossRef]
  16. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007). [CrossRef] [PubMed]
  17. S. M. Sze, and K. K. Ng, Physics of Semiconductor Devices (Wiley, New York, 2007).
  18. M. Wolf and H. Rauschenbach, “Series resistance effects on solar cell measurements,” Adv. Energy Convers. 3(2), 455–479 (1963). [CrossRef]
  19. M. A. Green, “Solar cell fill factors: general graph and empirical expressions,” Solid-State Electron. 24(8), 788–789 (1981). [CrossRef]
  20. C. Honsberg, and S. Bowden, “PVCDROM: Measuring ideality factor,” (Photovoltaic Education Network, 2010). http://www.pveducation.org/pvcdrom/characterisation/measurement-of-ideality-factor .
  21. D. K. Schroder, Semiconductor Material and Device Characterization (Wiley, New Jersey, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited