OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 19, Iss. S5 — Sep. 12, 2011
  • pp: A1155–A1164

Broadband wide-angle antireflection enhancement in AZO/Si shell/core subwavelength grating structures with hydrophobic surface for Si-based solar cells

Jung Woo Leem, Young Min Song, and Jae Su Yu  »View Author Affiliations

Optics Express, Vol. 19, Issue S5, pp. A1155-A1164 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2225 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Broadband wide-angle antireflection characteristics of aluminum-doped zinc oxide (AZO)/silicon (Si) shell/core subwavelength grating (SWG) structures with a hydrophobic surface, together with theoretical prediction using a rigorous coupled-wave analysis simulation, were investigated for Si-based solar cells. The AZO films with different thicknesses were deposited on Si SWGs by rf magnetron sputtering method, which forms a shell/core structure. The AZO/Si shell/core SWGs reduced significantly the surface reflection compared to the AZO films/Si substrate. The coverage of AZO films on Si SWGs improved the antireflective property over a wider incident angle. The AZO/Si shell/core SWG structure with a 200 nm-thick AZO layer deposited at an rf power of 200 W exhibited a water contact angle of 123°. This structure also exhibited a low average reflectance of ~2% over a wide wavelength range of 300-2100 nm with a solar weighted reflectance of 2.8%, maintaining a reflectance of < 9.2% at wavelengths of 300-2100 nm up to the incident angle of θi = 70°. The effective electrical properties of AZO films in AZO/Si shell/core SWGs were also analyzed.

© 2011 OSA

OCIS Codes
(310.1210) Thin films : Antireflection coatings
(220.4241) Optical design and fabrication : Nanostructure fabrication
(050.6624) Diffraction and gratings : Subwavelength structures

Original Manuscript: June 9, 2011
Revised Manuscript: July 25, 2011
Manuscript Accepted: August 8, 2011
Published: August 23, 2011

Jung Woo Leem, Young Min Song, and Jae Su Yu, "Broadband wide-angle antireflection enhancement in AZO/Si shell/core subwavelength grating structures with hydrophobic surface for Si-based solar cells," Opt. Express 19, A1155-A1164 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. M. Braun, “Design of single layer antireflection coatings for InP/In0.53Ga0.47As/InP photodetectors for the 1200-1600 nm wavelength range,” Appl. Opt.27(10), 2006–2011 (1988). [CrossRef] [PubMed]
  2. M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express16(8), 5290–5298 (2008). [CrossRef] [PubMed]
  3. J. Zhao and M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron. Dev.38(8), 1925–1934 (1991). [CrossRef]
  4. N. Kadakia, S. Naczas, H. Bakhru, and M. Huang, “Fabrication of surface texture by ion implantation for antireflection of silicon crystals,” Appl. Phys. Lett.97(19), 191912 (2010). [CrossRef]
  5. S. R. Kennedy and M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt.42(22), 4573–4579 (2003). [CrossRef] [PubMed]
  6. J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1(3), 176–179 (2007).
  7. S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett.93(25), 251108 (2008). [CrossRef]
  8. G. K. Kiema, M. J. Colgan, and M. J. Brett, “Dye sensitized solar cells incorporating obliquely deposited titanium oxide layers,” Sol. Energy Mater. Sol. Cells85(3), 321–331 (2005). [CrossRef]
  9. K. Robbie, D. J. Broer, and M. J. Brett, “Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,” Nature399(6738), 764–766 (1999). [CrossRef]
  10. Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett.8(5), 1501–1505 (2008). [CrossRef] [PubMed]
  11. Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, “Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells,” Nano Lett.8(12), 4191–4195 (2008). [CrossRef] [PubMed]
  12. K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small1(11), 1062–1067 (2005). [CrossRef] [PubMed]
  13. P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009). [CrossRef]
  14. O. K. Varghese, M. Paulose, and C. A. Grimes, “Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells,” Nat. Nanotechnol.4(9), 592–597 (2009). [CrossRef] [PubMed]
  15. C. Lee, S. Y. Bae, S. Mobasser, and H. Manohara, “A novel silicon nanotips antireflection surface for the micro Sun sensor,” Nano Lett.5(12), 2438–2442 (2005). [CrossRef] [PubMed]
  16. Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small6(9), 984–987 (2010). [CrossRef] [PubMed]
  17. J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B100(4), 891–896 (2010). [CrossRef]
  18. S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett.93(13), 133108 (2008). [CrossRef]
  19. M. Y. Chiu, C. H. Chang, M. A. Tsai, F. Y. Chang, and P. Yu, “Improved optical transmission and current matching of a triple-junction solar cell utilizing sub-wavelength structures,” Opt. Express18(S3), A308–A313 (2010). [CrossRef] [PubMed]
  20. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007). [CrossRef]
  21. Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B21(6), 2874–2877 (2003). [CrossRef]
  22. H. Kikuta, H. Toyota, and W. Yu, “Optical elements with subwavelength structured surfaces,” Opt. Rev.10(2), 63–73 (2003). [CrossRef]
  23. J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Antireflective properties of AZO subwavelength gratings patterned by holographic lithography,” Appl. Phys. B99(4), 695–700 (2010). [CrossRef]
  24. T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes,” Semicond. Sci. Technol.20(4), S35–S44 (2005). [CrossRef]
  25. S. R. Kurtz and R. G. Gordon, “Transparent conducting electrodes on silicon,” Sol. Energy Mater.15(4), 229–236 (1987). [CrossRef]
  26. J. W. Leem and J. S. Yu, “Glancing angle deposited ITO films for efficiency enhancement of a-Si:H/μc-Si:H tandem thin film solar cells,” Opt. Express19(S3), A258–A268 (2011). [CrossRef] [PubMed]
  27. D. Kim, I. Yun, and H. Kim, “Fabrication of rough Al doped ZnO films deposited by low pressure chemical vapor deposition for high efficiency thin film solar cells,” Curr. Appl. Phys.10(3 S1), S459–S462 (2010). [CrossRef] [PubMed]
  28. O. Lupan, S. Shishiyanu, V. Ursaki, H. Khallaf, L. Chow, T. Shishiyanu, V. Sontea, E. Monaico, and S. Railean, “Synthesis of nanostructured Al-doped zinc oxide films on Si for solar cells applications,” Sol. Energy Mater. Sol. Cells93(8), 1417–1422 (2009). [CrossRef]
  29. T. Mizuta, T. Ishibashi, T. Minemoto, H. Takakura, and Y. Hamakawa, “Chemical deposition of zinc oxide thin films on silicon substrate,” Thin Solid Films515(4), 2458–2463 (2006). [CrossRef]
  30. F. Chaabouni, M. Abaab, and B. Rezig, “Characterization of n-ZnO/p-Si films grown by magnetron sputtering,” Superlattices Microstruct.39(1–4), 171–178 (2006). [CrossRef]
  31. O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schöpe, C. Beneking, H. Wagner, A. Löffl, and H. W. Schock, “Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells,” Thin Solid Films351(1–2), 247–253 (1999). [CrossRef]
  32. Y. Tak and K. Yong, “Controlled growth of well-aligned ZnO nanorod array using a novel solution method,” J. Phys. Chem. B109(41), 19263–19269 (2005). [CrossRef] [PubMed]
  33. J. Y. Chen and K. W. Sun, “Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells,” Sol. Energy Mater. Sol. Cells94(5), 930–934 (2010). [CrossRef]
  34. J. Xiao, Y. Wu, X. Bai, W. Zhang, and L. Yu, “Controlled growth of ZnO pyramid arrays with nanorods and their field emission properties,” J. Phys. D Appl. Phys.41(13), 135409 (2008). [CrossRef]
  35. S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photovolt. Res. Appl.18(3), 195–203 (2010). [CrossRef]
  36. S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical silicon nanowire arrays,” Sol. Energy Mater. Sol. Cells94(9), 1506–1511 (2010). [CrossRef]
  37. M. G. Moharam, “Coupled-wave analysis of two-dimensional gratings,” Proc. SPIE883, 8–11 (1988).
  38. A. J. Jääskeläinen, K. E. Peiponen, J. Räty, U. Tapper, O. Richard, E. I. Kauppinen, and K. Lumme, “Estimation of the refractive index of plastic pigments by Wiener bounds,” Opt. Eng.39(11), 2959–2963 (2000). [CrossRef]
  39. D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci.273(1587), 661–667 (2006). [CrossRef] [PubMed]
  40. J. S. Hur, J. B. Song, J. Kim, D. Byun, C. S. Son, J. H. Yun, and K. H. Yoon, “Efficiencies of CIGS solar cells using transparent conducting Al-doped ZnO window layers as a function of thickness,” J. Korean Phys. Soc.53(1), 437–441 (2008).
  41. K. C. Sahoo, Y. Li, and E. Y. Chang, “Shape effect of silicon nitride subwavelength structure on reflectance for silicon solar cells,” IEEE Trans. Electron. Dev.57(10), 2427–2433 (2010). [CrossRef]
  42. Y. Yang, X. Zeng, Y. Zeng, L. Liu, and Q. Chen, “Deposition of quasi-crystal Al-doped ZnO thin films for photovoltaic device applications,” Appl. Surf. Sci.257(1), 232–238 (2010). [CrossRef]
  43. M. I. Mendelson, “Average grain size in polycrystalline ceramics,” J. Am. Ceram. Soc.52(8), 443–446 (1969). [CrossRef]
  44. H. Wang, M. H. Xu, J. W. Xu, M. F. Ren, and L. Yang, “Low temperature synthesis of sol–gel derived Al-doped ZnO thin films with rapid thermal annealing process,” J. Mater. Sci. Mater. Electron.21(6), 589–594 (2010). [CrossRef]
  45. H. Tong, Z. Deng, Z. Liu, C. Huang, J. Huang, H. Lan, C. Wang, and Y. Cao, “Effects of post-annealing on structural, optical and electrical properties of Al-doped ZnO thin films,” Appl. Surf. Sci.257(11), 4906–4911 (2011). [CrossRef]
  46. J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010). [CrossRef] [PubMed]
  47. J. Wang and L. L. Shaw, “Transparent nanocrystalline hydroxyapatite by pressure-assisted sintering,” Scr. Mater.63(6), 593–596 (2010). [CrossRef]
  48. D. Buie, M. J. McCann, K. J. Weber, and C. J. Dey, “Full day simulations of anti-reflection coatings for flat plate silicon photovoltaics,” Sol. Energy Mater. Sol. Cells81(1), 13–24 (2004). [CrossRef]
  49. B. Thaidigsmann, A. Wolf, and D. Biro, “Accurate determination of the IQE of screen printed silicon solar cells by accounting for the finite reflectance of metal contacts,” Proc. 24th European PV Solar Energy Conference and Exhibition, Hamburg, Germany, 21–25 September (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited