OSA's Digital Library

Energy Express

Energy Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. S6 — Nov. 7, 2011
  • pp: A1219–A1230

Design of nanostructured plasmonic back contacts for thin-film silicon solar cells

Ulrich W. Paetzold, Etienne Moulin, Bart E. Pieters, Reinhard Carius, and Uwe Rau  »View Author Affiliations

Optics Express, Vol. 19, Issue S6, pp. A1219-A1230 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2492 KB) | SpotlightSpotlight on Optics

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on a plasmonic light-trapping concept based on localized surface plasmon polariton induced light scattering at nanostructured Ag back contacts of thin-film silicon solar cells. The electromagnetic interaction between incident light and localized surface plasmon polariton resonances in nanostructured Ag back contacts was simulated with a three-dimensional numerical solver of Maxwell’s equations. Geometrical parameters as well as the embedding material of single and periodic nanostructures on Ag layers were varied. The design of the nanostructures was analyzed regarding their ability to scatter incident light at low optical losses into large angles in the silicon absorber layers of the thin-film silicon solar cells.

© 2011 OSA

OCIS Codes
(350.6050) Other areas of optics : Solar energy
(250.5403) Optoelectronics : Plasmonics
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Solar Energy

Original Manuscript: August 10, 2011
Revised Manuscript: September 16, 2011
Manuscript Accepted: September 21, 2011
Published: October 12, 2011

Virtual Issues
October 28, 2011 Spotlight on Optics

Ulrich W. Paetzold, Etienne Moulin, Bart E. Pieters, Reinhard Carius, and Uwe Rau, "Design of nanostructured plasmonic back contacts for thin-film silicon solar cells," Opt. Express 19, A1219-A1230 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (Version 37),” Prog. Photovolt. Res. Appl.19(1), 84–92 (2011). [CrossRef]
  2. B. Rech, T. Repmann, M. N. van den Donker, M. Berginski, T. Kilper, J. Hüpkes, S. Calnan, H. Stiebig, and S. Wieder, “Challenges in microcrystalline silicon based solar cell technology,” Thin Solid Films511–512, 548–555 (2006). [CrossRef]
  3. G. Yue, L. Sivec, J. M. Owens, B. Yan, J. Yang, and S. Guha, “Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells,” Appl. Phys. Lett.95(26), 263501 (2009). [CrossRef]
  4. E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev.29(2), 300–305 (1982). [CrossRef]
  5. D. Redfield, “Multiple-pass thin-film silicon solar cell,” Appl. Phys. Lett.25(11), 647 (1974). [CrossRef]
  6. M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions,” Prog. Photovolt. Res. Appl.10(4), 235–241 (2002). [CrossRef]
  7. J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light-trapping in silicon thin-film solar cells,” Sol. Energy77(6), 917–930 (2004). [CrossRef]
  8. T. Matsui, M. Tsukiji, H. Saika, T. Toyama, and M. Okamoto, “Influence of substrate texture on microstructure and photovoltaic performances of thin-film polycrystalline silicon solar cells,” J. Non-Cryst. Solids299–302, 1152–1156 (2002). [CrossRef]
  9. T. Söderström, D. Dominé, A. Feltrin, M. Despeisse, F. Meillaud, G. Bugnon, M. Boccard, P. Cuony, F. J. Haug, S. Fay, S. Nicolay, and C. Ballif, “ZnO Transparent conductive oxide for thin-film silicon solar cells,” Proc. SPIE7603, 76030B, 76030B–12 (2010). [CrossRef]
  10. J. Springer, B. Rech, W. Reetz, J. Müller, and M. Vanecek, “Light-trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates,” Sol. Energy Mater. Sol. Cells85, 1–11 (2005).
  11. S. Fahr, C. Rockstuhl, and F. Lederer, “Engineering the randomness for enhanced absorption in solar cells,” Appl. Phys. Lett.92(17), 171114 (2008). [CrossRef]
  12. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett.89(9), 093103 (2006). [CrossRef]
  13. F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi205(12), 2844–2861 (2008). [CrossRef]
  14. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  15. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008). [CrossRef]
  16. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer Series in Materials Science (Springer-Verlag, Berlin, 1995).
  17. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley-Interscience, 1983).
  18. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007). [CrossRef]
  19. E. Moulin, J. Sukmanowski, M. Schulte, A. Gordijn, F. Royer, and H. Stiebig, “Thin-film silicon solar cells with integrated silver nanoparticles,” Thin Solid Films516(20), 6813–6817 (2008). [CrossRef]
  20. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett.95(18), 183503 (2009). [CrossRef]
  21. U. W. Paetzold, F. Hallermann, B. E. Pieters, U. Rau, R. Carius, and G. von Plessen, “Localized plasmonic losses at metal back contacts of thin-film silicon solar cells,” Proc. SPIE7725, 772517, 772517–772519 (2010). [CrossRef]
  22. J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflectors of thin-film silicon solar cells,” J. Appl. Phys.95(3), 1427–1430 (2004). [CrossRef]
  23. J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Status Solidi, B Basic Res.244(10), 3419–3434 (2007). [CrossRef]
  24. U. W. Paetzold, IEK5-Photovoltaik, Forschungszentrum Juelich GmbH, D-52425 Juelich, Germany (optical data can be provided upon request, contact u.paetzold@fz-juelich.de).
  25. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370––4379 (1972). [CrossRef]
  26. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York 1985).
  27. C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys.104(12), 123102 (2008). [CrossRef]
  28. K. Ellmer, A. Klein, and B. Rech, Transparent Conductive Zinc Oxide: Basics and Applications in Thin-film Solar Cells (Springer, Berlin, 2008).
  29. K. Jäger, M. Schulte, K. Bittkau, A. M. Ermes, M. Zeeman, and B. E. Pieters, “Optical scattering properties of nano-textured ZnO silicon interfaces,” Proc. SPIE8001, 800113 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited