OSA's Digital Library

Optics Express

Optics Express

  • Editor: J. H. Eberly
  • Vol. 2, Iss. 4 — Feb. 16, 1998
  • pp: 125–130

Hot electrons and curves of constant gain in long wavelength quantum well lasers

Vera Gorfinkel, Mikhail Kisin, and Serge Luryi  »View Author Affiliations


Optics Express, Vol. 2, Issue 4, pp. 125-130 (1998)
http://dx.doi.org/10.1364/OE.2.000125


View Full Text Article

Enhanced HTML    Acrobat PDF (315 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In long wavelength quantum well lasers the effective electron temperature (Te ) is often a strong function of the pump current and hence the Te correlates with the carrier concentration n in the active region. On the other hand, the material gain g in the active layer depends on both variables, g=g(n,Te). We discuss a convenient way of analyzing this situation, based on considering the contours of constant gain g on the surface g(n,Te). This is qualitatively illustrated with two model examples involving quantum well lasers, the long-wavelength quantum well laser with current dominated by the Auger recombination and the unipolar quantum cascade laser.

© Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.5590) Optical devices : Quantum-well, -wire and -dot devices

ToC Category:
Focus Issue: Quantum well laser design

History
Original Manuscript: November 4, 1997
Published: February 16, 1998

Citation
Vera Gorfinkel, Mikhail Kisin, and Serge Luryi, "Hot electrons and curves of constant gain in long wavelength quantum well lasers," Opt. Express 2, 125-130 (1998)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-2-4-125


Sort:  Journal  |  Reset  

References

  1. S. Luryi, "Hot electrons in semiconductor devices", in Hot Electrons in Semiconductors, N. Balkan, ed. (Oxford University Press, 1998) pp. 385-427; http://www.ee.sunysb.edu/~serge/152.dir/152.html
  2. V. B. Gorfinkel and S. Luryi, "Fundamental limits for linearity of CATV lasers", J. Lightwave Technol. 13, 252-260 (1995); http://www.ee.sunysb.edu/~serge/133.html [CrossRef]
  3. M. Silver, E. P. OReilly, and A. R. Adams, Determination of the wavelength dependence of Auger recombination in long-wavelength quantum-well semiconductor lasers using hydrostatic pressure, IEEE J. Quantum Electron. 33, 1557-1566 (1997). [CrossRef]
  4. Z. Shi, M. Tacke, A. Lambrecht, and H. Bttner, Midinfrared lead salt multi-quantum-well diode lasers with 282 K operation, Appl. Phys. Lett. 66, 2537-2539 (1995). [CrossRef]
  5. H. K. Choi, G. W. Turner, and H. Q. Le, InAsSb/InAlAs strained quantum-well lasers emitting at 4.5 Pm, Appl. Phys. Lett. 66, 3543-3545 (1995). [CrossRef]
  6. J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, Type-II and Type-I interband cascade lasers, Electron Lett. 32, 45-46 (1996). [CrossRef]
  7. J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S.-N. G. Chu, and A. Y. Cho, High power mid-infrared (OaPm) quantum cascade lasers operating above room temperature, Appl. Phys. Lett. 68, 3680-3682 (1996). [CrossRef]
  8. Vera Gorfinkel, Serge Luryi, and Boris Gelmont, "Theory of gain spectra for quantum cascade lasers and temperature dependence of their characteristics at low and moderate carrier concentrations", IEEE J. Quantum Electron. 32, 1995-2003 (1996); http://www.ee.sunysb.edu/~serge/145.html [CrossRef]
  9. M. V. Kisin, V. B. Gorfinkel, M. A. Stroscio, G. Belenky, and S. Luryi, Influence of complex phonon spectra on intersubband optical gain, J. Appl. Phys. 82, 2031-2038 (1997); http://www.ee.sunysb.edu/~serge/148.pdf [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited