OSA's Digital Library

Optics Express

Optics Express

  • Editor: J. H. Eberly
  • Vol. 2, Iss. 4 — Feb. 16, 1998
  • pp: 131–136

Auger optimization in mid-infrared lasers: the importance of final-state optimization

Michael E. Flatté and C. H. Grein  »View Author Affiliations

Optics Express, Vol. 2, Issue 4, pp. 131-136 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (798 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We consider the effect of reducing the density of final hole states for Auger processes on the Auger rate at room temperature and 77K at densities near lasing thresholds. The system of interest is a strain-compensated superlattice based on the InAs/GaInSb material system with a 3.7 μm band gap. At 77K the Auger lifetime is reduced by two orders of magnitude, while the change at 300K is less than a factor of two. We conclude that final-state optimization in this particular structure, while pronounced at 77K, has little effect at 300K.

© Optical Society of America

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.5960) Lasers and laser optics : Semiconductor lasers

ToC Category:
Focus Issue: Quantum well laser design

Original Manuscript: October 9, 1997
Published: February 16, 1998

Michael Flatte and C. Grein, "Auger optimization in mid-infrared lasers: the importance of final-state optimization," Opt. Express 2, 131-136 (1998)

Sort:  Journal  |  Reset  


  1. E. Yablonovitch and E. O. Kane, "Reduction of Lasing Threshold Current Density by the Lowering of Valence Band Effective Mass", J. Lightwave Technol. LT- 4, 504 (1986). [CrossRef]
  2. e.g. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995).
  3. T. C. Hasenberg, R. H. Miles, A. R. Kost, and L. West, "Recent advances in Sb-based midwaveinfrared lasers", J. Quantum Electron. QE-33, 1403 (1997). [CrossRef]
  4. D. H. Chow, R. H. Miles, T. C. Hasenberg, A. R. Kost, Y.-H. Zhang, H. L. Dunlap, and L. West, "Mid-wave infrared diode lasers based on GaInSb/InAs and InAs/AlSb superlattices", Appl. Phys. Lett. 67, 3700 (1995). [CrossRef]
  5. J. R. Meyer, C. A. Hoffman, F. J. Bartoli, and L. R. Ram-Mohan, "Type II quantum-well lasers for the mid-wavelength infrared", Appl. Phys. Lett. 67, 757 (1995). [CrossRef]
  6. H. K. Choi, G. W. Turner, and M. J. Manfra, "High CW power (>200mW/facet) at 3.4µm from InAsSb/InAlAsSb strained quantum well diode lasers", Electron. Lett. 32, 1296 (1996). [CrossRef]
  7. H. K. Choi, G. W. Turner, M. J. Manfra, and M. K. Connors, "175K continuous wave operation of InAsSb/InAlAsSb quantum-well diode lasers emitting at 3.5µm", Appl. Phys. Lett. 68, 2936 (1996). [CrossRef]
  8. S. R. Kurtz, R. M. Biefeld, A. A. Allerman, A. J. Howard, M. H. Crawford, and M. W. Pelczynski, "Pseudomorphic InAsSb multiple quantum well injection laser emitting at 3.5 µm", Appl. Phys. Lett. 68, 1332 (1996). [CrossRef]
  9. M. E. Flatte', J. T. Olesberg, S. A. Anson, T. F. Boggess, T. C. Hasenberg, R. H. Miles, and C. H. Grein, "Theoretical Performance of Mid-Infrared Broken-Gap Multilayer Superlattice Lasers", Appl. Phys. Lett. 70, 3212 (1997). The layer widths of the four-layer superlattice given in this reference are in error. In fact they should be the same as those of the superlattice considered here. [CrossRef]
  10. M. E. Flatte', C. H. Grein, and H. Ehrenreich, "Sensitivity of optimization of mid-infrared InAs/InGaSb laser active regions to temperature and composition variations", Appl. Phys. Lett. in press.
  11. C. H. Grein, P. M. Young, M. E. Flatte', and H. Ehrenreich, "Long wavelength InAs/InGaSb infrared detectors: Optimization of carrier lifetimes", J. Appl. Phys. 78, 7143 (1995). [CrossRef]
  12. M. E. Flatte', C. H. Grein, H. Ehrenreich, R. H. Miles, and H. Cruz, "Theoretical performance limits of 2:1 [CrossRef]
  13. M. E. Flatte', P. M. Young, L.-H. Peng, and H. Ehrenreich, "Generalized superlattice K p theory and intersubband optical transitions", Phys. Rev. B 53, 1963 (1996). [CrossRef]
  14. O. Madelung, in Semiconductors, Physics of Group IV Elements and III-V Compounds, edited by K.-H. Helluege and O. Madelung, Landolt-Boernstein, New Series, Group III, Vol. 17, Pt. a (Springer-Verlag, Berlin, 1982).
  15. O. Madelung in Intrinsic Properties of Group IV Elements and III-V, II-VI and I-VII Compounds, edited by K.-H. Helluege and O. Madelung, Landolt-Boernstein, New Series, Group III, Vol. 22, Pt. a (Springer-Verlag, Berlin, 1987).
  16. M. E. Flatte', C. H. Grein, T. C. Hasenberg, S. A. Anson, D.-J. Jang, J. T. Olesberg, and T. F. Boggess, "Carrier recombination rates in narrow-gap semiconductor superlattices", unpublished.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited