OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 1 — Jan. 2, 2012
  • pp: 120–127

Two-dimensional microstructures induced by femtosecond vector light fields on silicon

Kai Lou, Sheng-Xia Qian, Xi-Lin Wang, Yongnan Li, Bing Gu, Chenghou Tu, and Hui-Tian Wang  »View Author Affiliations

Optics Express, Vol. 20, Issue 1, pp. 120-127 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1223 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have fabricated the complicated two-dimensional subwave-length microstructures induced by the femtosecond vector light fields on silicon. The fabricated microstructures have the interval between two ripples in microstructures to be around 670–690 nm and the depth of the grooves to be about 300 nm when the pulse fluence of 0.26 J/cm2 is slightly higher than the ablated threshold of 0.2 J/cm2 for silicon under the irradiation of 100 pulses. The ripples are always perpendicular to the direction of the locally linear polarization. The designable spatial structure of polarization of the femtosecond vector light field can be used to manipulate the fabricated microstructure.

© 2011 OSA

OCIS Codes
(190.4180) Nonlinear optics : Multiphoton processes
(260.5430) Physical optics : Polarization
(320.2250) Ultrafast optics : Femtosecond phenomena
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Laser Microfabrication

Original Manuscript: October 28, 2011
Revised Manuscript: November 23, 2011
Manuscript Accepted: November 23, 2011
Published: December 19, 2011

Kai Lou, Sheng-Xia Qian, Xi-Lin Wang, Yongnan Li, Bing Gu, Chenghou Tu, and Hui-Tian Wang, "Two-dimensional microstructures induced by femtosecond vector light fields on silicon," Opt. Express 20, 120-127 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009). [CrossRef]
  2. C. Maurer, A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007). [CrossRef]
  3. X. L. Wang, J. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32, 3549–3551 (2007). [CrossRef] [PubMed]
  4. X. L. Wang, Y. N. Li, J. Chen, C. S. Guo, J. P. Ding, and H. T. Wang, “A new type of vector fields with hybrid states of polarization,” Opt. Express 18, 10786–10795 (2010). [CrossRef] [PubMed]
  5. M. R. Dennis, K. O’Holleran, and M. J. Padgett, “Singular optics: Optical vortices and polarization singularities,” Prog. Opt. 53, 293–363 (2009). [CrossRef]
  6. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003). [CrossRef] [PubMed]
  7. C. C. Sun and C. K. Liu, “Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation,” Opt. Lett. 28, 99–101 (2003). [CrossRef] [PubMed]
  8. Y. Kozawa and S. Sato, “Sharper focal spot formed by higher-order radially polarized laser beams,” J. Opt. Soc. Am. A 24, 1793–1798 (2007). [CrossRef]
  9. H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photon. 2, 501–505 (2008). [CrossRef]
  10. C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106, 123901 (2011). [CrossRef] [PubMed]
  11. Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pluses,” Phys. Rev. Lett. 91, 247405 (2003). [CrossRef] [PubMed]
  12. D. J. Hwang, C. P. Grigoropoulos, and T. Y. Choi, “Efficiency of silicon micromachining by femtosecond laser pulses in ambient air,” J. Appl. Phys. 99, 083101 (2006). [CrossRef]
  13. K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82, 165417 (2010). [CrossRef]
  14. E. M. Hsu, T. H. R. Crawford, H. F. Tiedje, and H. K. Haugen, “Periodic surface structures on gallium phosphide after irradiation with 150fs-7ns laser pulses at 800nm,” Appl. Phys. Lett. 91, 111102 (2007). [CrossRef]
  15. M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano.  3, 4062–4070 (2009). [CrossRef] [PubMed]
  16. J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface Plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106, 104910 (2009). [CrossRef]
  17. S. Sakabe, M. Hashida, S. Tokuta, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79, 033409 (2009). [CrossRef]
  18. R. A. Ganeev, M. Baba, T. Ozaki, and H. Kuroda, “Long- and short-period nanostructure formation on semiconductor surfaces at different ambient conditions,” J. Opt. Soc. Am. B 27, 1077–1082 (2010). [CrossRef]
  19. R. L. Harzic, D. D. Sauer, M. Neumeier, M. Epple, H. Zimmermann, and F. Stracke, “Formation of periodic nanoripples on silicon and Germanium induced by femtosecond laser pulses,” Phys. Procedia 12, 29–36 (2011). [CrossRef]
  20. C. Wang, H. B. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21, 075304 (2010). [CrossRef]
  21. J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phy. A 74, 19–25 (2002). [CrossRef]
  22. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1760 (1996). [CrossRef]
  23. Y. H. Han and S. L. Qu, “The ripples and nanoparticles on silicon irradiated by femtosecond laser,” Chem. Phys. Lett. 495, 241–244 (2010). [CrossRef]
  24. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995). [CrossRef] [PubMed]
  25. A. D. Bristow, N. Rotenberg, and H. M. V. Driel, “Two-photon absorption and kerr coefficients of silicon for 850–2200nm,” Appl. Phys. Lett. 90, 191104 (2007). [CrossRef]
  26. M. Kraus, M. A. Ahmed, A. Michalowski, A. Voss, R. Weber, and T. Graf, “Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization,” Opt. Express 18, 22305–22313 (2010). [CrossRef] [PubMed]
  27. K. Venkatakrishnan and B. Tan, “Interconnect microvia drilling with a radially polarized laser beam,” J. Micromech. Microeng. 16, 2603–2607 (2006). [CrossRef]
  28. W. C. Shen, C. W. Cheng, M. C. Yang, Y. Kozawa, and S. Sato, “Fabrication of novel structures on silicon with femtosecond laser pulses,” J. Laser Micro/Nanoeng. 5, 229–232 (2010). [CrossRef]
  29. M. Kempe and W. Rudolph, “Femtosecond pulses in the focal region of lenses,” Phys. Rev. A 48, 4721–4729 (1993). [CrossRef] [PubMed]
  30. K. M. Romallosa, J. Bantang, and C. Saloma, “Three-dimensional light distribution near the focus of a tightly focused beam of few-cycle optical pulses,” Phys. Rev. A 68, 033812 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited