OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 1 — Jan. 2, 2012
  • pp: 164–172

Compact cantilever couplers for low-loss fiber coupling to silicon photonic integrated circuits

Michael Wood, Peng Sun, and Ronald M. Reano  »View Author Affiliations

Optics Express, Vol. 20, Issue 1, pp. 164-172 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3122 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate coupling from tapered optical fibers to 450 nm by 250 nm silicon strip waveguides using compact cantilever couplers. The couplers consist of silicon inverse width tapers embedded within silicon dioxide cantilevers. Finite difference time domain simulations are used to design the length of the silicon inverse width taper to as short as 6.5 μm for a cantilever width of 2 μm. Modeling of various strip waveguide taper profiles shows reduced coupling losses for a quadratic taper profile. Infrared measurements of fabricated devices demonstrate average coupling losses of 0.62 dB per connection for the quasi-TE mode and 0.50 dB per connection for the quasi-TM mode across the optical telecommunications C band. In the wavelength range from 1477 nm to 1580 nm, coupling losses for both polarizations are less than 1 dB per connection. The compact, broadband, and low-loss coupling scheme enables direct access to photonic integrated circuits on an entire chip surface without the need for dicing or cleaving the chip.

© 2011 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(200.4650) Optics in computing : Optical interconnects
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Integrated Optics

Original Manuscript: October 10, 2011
Revised Manuscript: November 28, 2011
Manuscript Accepted: December 8, 2011
Published: December 19, 2011

Michael Wood, Peng Sun, and Ronald M. Reano, "Compact cantilever couplers for low-loss fiber coupling to silicon photonic integrated circuits," Opt. Express 20, 164-172 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006). [CrossRef]
  2. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002). [CrossRef]
  3. S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11(22), 2927–2939 (2003). [CrossRef] [PubMed]
  4. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003). [CrossRef] [PubMed]
  5. K. K. Lee, D. R. Lim, D. Pan, C. Hoepfner, W.-Y. Oh, K. Wada, L. C. Kimerling, K. P. Yap, and M. T. Doan, “Mode transformer for miniaturized optical circuits,” Opt. Lett. 30(5), 498–500 (2005). [CrossRef] [PubMed]
  6. G. Roelkens, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography,” IEEE Photon. Technol. Lett. 17(12), 2613–2615 (2005). [CrossRef]
  7. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005). [CrossRef]
  8. J. V. Galán, P. Sanchis, G. Sánchez, and J. Martí, “Polarization insensitive low-loss coupling technique between SOI waveguides and high mode field diameter single-mode fibers,” Opt. Express 15(11), 7058–7065 (2007). [CrossRef] [PubMed]
  9. H. Sun, A. Chen, A. Szep, and L. R. Dalton, “Efficient fiber coupler for vertical silicon slot waveguides,” Opt. Express 17(25), 22571–22577 (2009). [CrossRef] [PubMed]
  10. T. Wahlbrink, W. S. Tsai, M. Waldow, M. Först, J. Bolten, T. Mollenhauer, and H. Kurz, “Fabrication of high efficiency SOI taper structures,” Microelectron. Eng. 86(4-6), 1117–1119 (2009). [CrossRef]
  11. Q. Fang, T.-Y. Liow, J. F. Song, C. W. Tan, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Suspended optical fiber-to-waveguide mode size converter for silicon photonics,” Opt. Express 18(8), 7763–7769 (2010). [CrossRef] [PubMed]
  12. M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283(19), 3678–3682 (2010). [CrossRef]
  13. B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (<1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010). [CrossRef]
  14. L. Chen, C. R. Doerr, Y.-K. Chen, and T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photon. Technol. Lett. 22(23), 1744–1746 (2010). [CrossRef]
  15. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002). [CrossRef]
  16. G. Z. Masanovic, G. T. Reed, W. Headley, B. Timotijevic, V. M. N. Passaro, R. Atta, G. Ensell, and A. G. R. Evans, “A high efficiency input/output coupler for small silicon photonic devices,” Opt. Express 13(19), 7374–7379 (2005). [CrossRef] [PubMed]
  17. P. Cheben, S. Janz, D.-X. Xu, B. Lamontagne, A. Delâge, and S. Tanev, “A broad-band waveguide grating coupler with a subwavelength grating mirror,” IEEE Photon. Technol. Lett. 18(1), 13–15 (2006). [CrossRef]
  18. L. Vivien, D. Pascal, S. Lardenois, D. Marris-Morini, E. Cassan, F. Grillot, S. Laval, J.-M. Fédéli, and L. El Melhaoui, “Light injection in SOI microwaveguides using high-efficiency grating couplers,” J. Lightwave Technol. 24(10), 3810–3815 (2006). [CrossRef]
  19. F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol. 25(1), 151–156 (2007). [CrossRef]
  20. D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express 18(17), 18278–18283 (2010). [CrossRef] [PubMed]
  21. Y. Tang, Z. Wang, L. Wosinski, U. Westergren, and S. He, “Highly efficient nonuniform grating coupler for silicon-on-insulator nanophotonic circuits,” Opt. Lett. 35(8), 1290–1292 (2010). [CrossRef] [PubMed]
  22. P. Sun and R. M. Reano, “Cantilever couplers for intra-chip coupling to silicon photonic integrated circuits,” Opt. Express 17(6), 4565–4574 (2009). [CrossRef] [PubMed]
  23. P. Sun and R. M. Reano, “Vertical chip-to-chip coupling between silicon photonic integrated circuits using cantilever couplers,” Opt. Express 19(5), 4722–4727 (2011). [CrossRef] [PubMed]
  24. D. Pozar, Microwave Engineering (John Wiley & Sons, 2005).
  25. O. Mitomi, K. Kasaya, and H. Miyazawa, “Design of a single-mode tapered waveguide for low-loss chip-to-fiber coupling,” IEEE J. Quantum Electron. 30(8), 1787–1793 (1994). [CrossRef]
  26. T. Alder, A. Stöhr, R. Heinzelmann, and D. Jäger, “High-efficiency fiber-to-chip coupling using low-loss tapered single-mode fiber,” IEEE Photon. Technol. Lett. 12(8), 1016–1018 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited