OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 1 — Jan. 2, 2012
  • pp: 377–384

Optical modulation of guided mode resonance in the waveguide grating structure incorporated with azo-doped-poly(methylmethacrylate) cladding layer

Jian Hung Lin, Yu Chung Huang, Ngoc DiepLai, Hung-Chih Kan, and Chia Chen Hsu  »View Author Affiliations

Optics Express, Vol. 20, Issue 1, pp. 377-384 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1135 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical modulation of guided mode resonance (GMR) is demonstrated in a waveguide grating structure (WGS) which contains a disperse-red1 (DR1)-doped poly(methylmethacrylate) (PMMA) cladding layer. The resonance wavelength of a GMR mode can be tuned by pumping the cladding layer with a 442 nm wavelength laser beam, because of photoinduced refractive index change in the layer. The resonance wavelength shifts to shorter wavelength side, and the shift increases with pumping power, up to a maximum shift of 5 nm. A detector was used to monitor the intensity of the light that was reflected from the WGS at the wavelengths of the GMR peak positions, and the WGS was found to exhibit optical modulation with a shortest switching time of less than 0.3s.

© 2011 OSA

OCIS Codes
(230.7370) Optical devices : Waveguides
(250.2080) Optoelectronics : Polymer active devices
(250.5460) Optoelectronics : Polymer waveguides
(260.3160) Physical optics : Interference
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: October 27, 2011
Revised Manuscript: December 13, 2011
Manuscript Accepted: December 13, 2011
Published: December 21, 2011

Jian Hung Lin, Yu Chung Huang, Ngoc DiepLai, Hung-Chih Kan, and Chia Chen Hsu, "Optical modulation of guided mode resonance in the waveguide grating structure incorporated with azo-doped-poly(methylmethacrylate) cladding layer," Opt. Express 20, 377-384 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992). [CrossRef]
  2. A. Sharon, D. Rosenblatt, and A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett. 69(27), 4154–4156 (1996). [CrossRef]
  3. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997). [CrossRef]
  4. R. J. Stockermans and P. L. Rochon, “Narrow-band resonant grating waveguide filters constructed with azobenzene polymers,” Appl. Opt. 38(17), 3714–3719 (1999). [CrossRef] [PubMed]
  5. P. Rochon, A. Natansohn, C. L. Callender, and L. Robitaille, “Guided mode resonance filters using polymer films,” Appl. Phys. Lett. 71(8), 1008–1010 (1997). [CrossRef]
  6. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981). [CrossRef]
  7. S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A 7(8), 1470–1474 (1990). [CrossRef]
  8. G. Levy-Yurista and A. A. Friesem, “Very narrow spectral filters with multilayered grating-waveguide structures,” Appl. Phys. Lett. 77(11), 1596–1598 (2000). [CrossRef]
  9. B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009). [CrossRef]
  10. I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “A sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sens. J. 8(3), 274–280 (2008). [CrossRef]
  11. G. Nemova and R. Kashyap, “A compact integrated planar-waveguide refractive-index sensor based on a corrugated metal grating,” J. Lightwave Technol. 25(8), 2244–2250 (2007). [CrossRef]
  12. A. Sharon, D. Rosenblatt, A. A. Friesem, H. G. Weber, H. Engel, and R. Steingrueber, “Light modulation with resonant grating-waveguide structures,” Opt. Lett. 21(19), 1564–1566 (1996). [CrossRef] [PubMed]
  13. T. Katchalski, G. Levy-Yurista, A. Friesem, G. Martin, R. Hierle, and J. Zyss, “Light modulation with electro-optic polymer-based resonant grating waveguide structures,” Opt. Express 13(12), 4645–4650 (2005). [CrossRef] [PubMed]
  14. R. R. Boye, R. W. Ziolkowski, and R. K. Kostuk, “Resonant waveguide-grating switching device with nonlinear optical material,” Appl. Opt. 38(24), 5181–5185 (1999). [CrossRef] [PubMed]
  15. Y. Kanamori, T. Kitani, and K. Hane, “Control of guided resonance in a photonic crystal slab using microelectromechanical actuators,” Appl. Phys. Lett. 90(3), 031911 (2007). [CrossRef]
  16. D. Nau, R. P. Bertram, K. Buse, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical switching in metallic photonic crystal slabs with photoaddressable polymers,” Appl. Phys. B 82(4), 543–547 (2006). [CrossRef]
  17. F. Yang, G. Yen, G. Rasigade, J. A. N. T. Soares, and B. T. Cunningham, “Optically tuned resonant optical reflectance filter,” Appl. Phys. Lett. 92(9), 091115 (2008). [CrossRef]
  18. Z. Sekkat and W. Knoll, eds., Photoreactive Organic Thin Films (Academic, San Diego, CA, 2002), and references therein.
  19. Z. Sekkat and M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,” Synth. Met. 54(1-3), 373–381 (1993). [CrossRef]
  20. V. M. Churikov and C. C. Hsu, “Optical control of third harmonic generation in azo-doped polymethylmethacrylate thin films,” Appl. Phys. Lett. 77(14), 2095–2097 (2000). [CrossRef]
  21. V. M. Churikov and C. C. Hsu, “Optically induced anisotropy of third-order susceptibility in azo-dye polymers,” J. Opt. Soc. Am. B 18(11), 1722–1731 (2001). [CrossRef]
  22. J. H. Lin, N. D. Lai, and C. C. Hsu, “Optical control of recovery speed of photoinduced third-harmonic generation in azo-copolymer thin films,” Appl. Phys. Lett. 88(13), 131111 (2006). [CrossRef]
  23. S. Boonruang, A. Greenwell, and M. G. Moharam, “Broadening the angular tolerance in two-dimensional grating resonance structures at oblique incidence,” Appl. Opt. 46(33), 7982–7992 (2007). [CrossRef] [PubMed]
  24. S. Boonruang, A. Greenwell, and M. G. Moharam, “Multiline two-dimensional guided-mode resonant filters,” Appl. Opt. 45(22), 5740–5747 (2006). [CrossRef] [PubMed]
  25. N. D. Lai, W. P. Liang, J. H. Lin, and C. C. Hsu, “Rapid fabrication of large-area periodic structures containing well-defined defects by combining holography and mask techniques,” Opt. Express 13(14), 5331–5337 (2005). [CrossRef] [PubMed]
  26. N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, and C. H. Lin, “Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique,” Opt. Express 13(23), 9605–9611 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited