OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 1 — Jan. 2, 2012
  • pp: 42–47

Low-loss terahertz metamaterial from superconducting niobium nitride films

C. H. Zhang, J. B. Wu, B. B. Jin, Z. M. Ji, L. Kang, W. W. Xu, J. Chen, M. Tonouchi, and P. H. Wu  »View Author Affiliations


Optics Express, Vol. 20, Issue 1, pp. 42-47 (2012)
http://dx.doi.org/10.1364/OE.20.000042


View Full Text Article

Enhanced HTML    Acrobat PDF (1090 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper reports a type of low Ohmic loss terahertz (THz) metamaterials made from low-temperature superconducting niobium nitride (NbN) films. Its resonance properties are studied by THz time domain spectroscopy. Our experiments show that its unloaded quality factor reaches as high as 178 at 8 K with the resonance frequency at around 0.58 THz, which is about 24 times that of gold metamaterial at the same temperature. The unloaded quality factor keeps at a high level, above 90, even when the resonance frequency increases to 1.02 THz, which is close to the gap frequency of NbN film. All these experimental observations fit well into the framework of Bardeen-Copper-Schrieffer theory and equivalent circuit model. These new metamaterials offer an efficient way to the design and implementation of high performance THz electronic devices.

© 2011 OSA

OCIS Codes
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Metamaterials

History
Original Manuscript: October 10, 2011
Revised Manuscript: November 22, 2011
Manuscript Accepted: December 2, 2011
Published: December 19, 2011

Citation
C. H. Zhang, J. B. Wu, B. B. Jin, Z. M. Ji, L. Kang, W. W. Xu, J. Chen, M. Tonouchi, and P. H. Wu, "Low-loss terahertz metamaterial from superconducting niobium nitride films," Opt. Express 20, 42-47 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-1-42


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999). [CrossRef]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001). [CrossRef] [PubMed]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  4. A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett.92(11), 117403 (2004). [CrossRef] [PubMed]
  5. A. Tsiatmas, A. R. Buckingham, V. A. Fedotov, S. Wang, Y. Chen, P. A. J. De Groot, and N. I. Zheludev, “Superconducting plasmonics and extraordinary transmission,” Appl. Phys. Lett.97(11), 111106 (2010). [CrossRef]
  6. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett.76(25), 4773–4776 (1996). [CrossRef] [PubMed]
  7. X. S. Rao and C. K. Ong, “Amplification of evanescent waves in a lossy left-handed material slab,” Phys. Rev. B68(11), 113103 (2003). [CrossRef]
  8. R. E. Collin, Foundations for Microwave Engineering (IEEE Press, 1992).
  9. D. M. Pozar, Microwave Engineering (Wiley, 1998).
  10. R. Singh, Z. Tian, J. Han, C. Rockstuhl, J. Gu, and W. Zhang, “Cryogenic temperatures as a path toward high-Q terahertz metamaterials,” Appl. Phys. Lett.96(7), 071114 (2010). [CrossRef]
  11. B. B. Jin, C. H. Zhang, S. Engelbrecht, A. Pimenov, J. B. Wu, Q. Y. Xu, C. H. Cao, J. Chen, W. W. Xu, L. Kang, and P. H. Wu, “Low loss and magnetic field-tunable superconducting terahertz metamaterial,” Opt. Express18(16), 17504–17509 (2010). [CrossRef] [PubMed]
  12. M. Ricci, N. Orloff, and S. M. Anlage, “Superconducting metamaterials,” Appl. Phys. Lett.87(3), 034102 (2005). [CrossRef]
  13. J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H. T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett.97(7), 071102 (2010). [CrossRef]
  14. V. A. Fedotov, A. Tsiatmas, J. H. Shi, R. Buckingham, P. de Groot, Y. Chen, S. Wang, and N. I. Zheludev, “Temperature control of Fano resonances and transmission in superconducting metamaterials,” Opt. Express18(9), 9015–9019 (2010). [CrossRef] [PubMed]
  15. H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett.105(24), 247402 (2010). [CrossRef] [PubMed]
  16. C. Jaekel, C. Waschke, H. G. Roskos, H. Kurz, W. Prusseit, and H. Kinder, “Surface resistance and penetration depth of YBa2Cu3O7−δ thin films on silicon at ultrahigh frequencies,” Appl. Phys. Lett.64(24), 3326–3328 (1994). [CrossRef]
  17. L. Kang, B. B. Jin, X. Y. Liu, X. Q. Jia, J. Chen, Z. M. Ji, W. W. Xu, P. H. Wu, S. B. Mi, A. Pimenov, Y. J. Wu, and B. G. Wang, “Suppression of superconductivity in epitaxial NbN ultrathin films,” J. Appl. Phys.109(3), 033908 (2011). [CrossRef]
  18. B. B. Jin, P. Kuzel, F. Kadlec, T. Dahm, J. M. Redwing, A. V. Pogrebnyakov, X. X. Xi, and N. Klein, “Terahertz surface impedance of epitaxial MgB2 thin film,” Appl. Phys. Lett.87(9), 092503 (2005). [CrossRef]
  19. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006). [CrossRef] [PubMed]
  20. D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett.88(4), 041109 (2006). [CrossRef]
  21. J. B. Wu, B. B. Jin, Y. H. Xue, C. H. Zhang, H. Dai, L. B. Zhang, C. H. Cao, L. Kang, W. W. Xu, J. Chen, and P. H. Wu, “Tuning of superconducting niobium nitride terahertz metamaterials,” Opt. Express19(13), 12021–12026 (2011). [CrossRef] [PubMed]
  22. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007). [CrossRef] [PubMed]
  23. R. Singh, I. A. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express19(7), 6312–6319 (2011). [CrossRef] [PubMed]
  24. C. Jansen, I. A. I. Al-Naib, N. Born, and M. Koch, “Terahertz metasurfaces with high Q-factors,” Appl. Phys. Lett.98(5), 051109 (2011). [CrossRef]
  25. R. Singh, A. K. Azad, J. F. O’Hara, A. J. Taylor, and W. Zhang, “Effect of metal permittivity on resonant properties of terahertz metamaterials,” Opt. Lett.33(13), 1506–1508 (2008). [CrossRef] [PubMed]
  26. S. D. Brorson, R. Buhleier, J. O. White, I. E. Trofimov, H. U. Habermeier, and J. Kuhl, “Kinetic inductance and penetration depth of thin superconducting films measured by THz-pulse spectroscopy,” Phys. Rev. B Condens. Matter49(9), 6185–6187 (1994). [CrossRef] [PubMed]
  27. M. W. Coffey and J. R. Clem, “Unified theory of effects of vortex pinning and flux creep upon the rf surface impedance of type-II superconductors,” Phys. Rev. Lett.67(3), 386–389 (1991). [CrossRef] [PubMed]
  28. J. Han, W. Zhang, W. Chen, L. Thamizhmani, A. K. Azad, and Z. Zhu, “Far-infrared characteristics of ZnS nanoparticles measured by terahertz time-domain spectroscopy,” J. Phys. Chem. B110(5), 1989–1993 (2006). [CrossRef] [PubMed]
  29. R. Singh, C. Rockstuhl, and W. Zhang, “Strong influence of packing density in terahertz metamaterials,” Appl. Phys. Lett.97(24), 241108 (2010). [CrossRef]
  30. R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys.7(1), 37–55 (1967). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited