OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 1 — Jan. 2, 2012
  • pp: 534–546

Tuning surface plasmons in interconnected hemispherical Au shells

Peter Krohne-Nielsen, Sergey M. Novikov, Jonas Beermann, Per Morgen, Sergey I. Bozhevolnyi, and Ole Albrektsen  »View Author Affiliations

Optics Express, Vol. 20, Issue 1, pp. 534-546 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (6287 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a new approach for making interconnected hemispherical shells by stripping Au from templates of anodized aluminum, where the metal thickness can be adjusted without affecting the outer radius of curvature, film roughness and the sharpness of the hemisphere contact areas. This provides increased understanding of the surface plasmon resonances (SPRs) observed for Film-On-Nanospheres (FONs) by decoupling these parameters, which are coupled in the case of FONs. Investigating the influence of the shell thicknesses on the spectral positions of SPRs for FONs involves a dielectric core with a fixed radius encased by a metal film with adjustable thickness. By performing linear reflection spectroscopy, we demonstrate a wide tunability of the SPR by tailoring the inner hemisphere diameter, while keeping the outer diameter fixed. Deposition of extra Au on top of thick, previously stripped hemispherical shells isolates optical response contributions from Au grain- and island-mediated roughness, and unsharpening contact areas in form of decreasing LSPR quality factor. Two-photon luminescence scanning optical microscopy of shells with different thicknesses, applying several different laser wavelengths, is exploited to map local electromagnetic hot spots and correlate the high field enhancements with the linear reflection spectroscopy measurements.

© 2011 OSA

OCIS Codes
(180.5810) Microscopy : Scanning microscopy
(240.4350) Optics at surfaces : Nonlinear optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(290.4020) Scattering : Mie theory
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

Original Manuscript: October 4, 2011
Revised Manuscript: December 2, 2011
Manuscript Accepted: December 9, 2011
Published: December 21, 2011

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

Peter Krohne-Nielsen, Sergey M. Novikov, Jonas Beermann, Per Morgen, Sergey I. Bozhevolnyi, and Ole Albrektsen, "Tuning surface plasmons in interconnected hemispherical Au shells," Opt. Express 20, 534-546 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Nielsen, S. Hassing, O. Albrektsen, S. Foghmoes, and P. Morgen, “Fabrication of large-area self-organizing gold nanostructures with sub-10 nm gaps on a porous Al2O3 template for application as a SERS-substrate,” J. Phys. Chem. C 113(32), 14165–14171 (2009). [CrossRef]
  2. D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010). [CrossRef] [PubMed]
  3. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997). [CrossRef]
  4. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006). [CrossRef] [PubMed]
  5. R. B. Nielsen, I. Fernandez-Cuesta, A. Boltasseva, V. S. Volkov, S. I. Bozhevolnyi, A. Klukowska, and A. Kristensen, “Channel plasmon polariton propagation in nanoimprinted V-groove waveguides,” Opt. Lett. 33(23), 2800–2802 (2008). [CrossRef] [PubMed]
  6. I. P. Radko, S. I. Bozhevolnyi, A. B. Evlyukhin, and A. Boltasseva, “Surface plasmon polariton beam focusing with parabolic nanoparticle chains,” Opt. Express 15(11), 6576–6582 (2007). [CrossRef] [PubMed]
  7. S. I. Bozhevolnyi, J. Beermann, and V. Coello, “Direct observation of localized second-harmonic enhancement in random metal nanostructures,” Phys. Rev. Lett. 90(19), 197403 (2003). [CrossRef] [PubMed]
  8. P. Nielsen, J. Beermann, O. Albrektsen, S. Hassing, P. Morgen, and S. I. Bozhevolnyi, “Two-photon luminescence microscopy oflarge-area gold nanostructures on templates of anodized aluminum,” Opt. Express 18(16), 17040–17052 (2010). [CrossRef] [PubMed]
  9. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). [CrossRef] [PubMed]
  10. I.-K. Ding, J. Zhu, W. Cai, S.-J. Moon, N. Cai, P. Wang, S. M. Zakeeruddin, M. Grätzel, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Plasmonic dye-sensitized solar cells,” Adv. Energy Mater. 1(1), 52–57 (2011). [CrossRef]
  11. A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10(7), 2574–2579 (2010). [CrossRef] [PubMed]
  12. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908). [CrossRef]
  13. R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon Resonance Shifts of Au-Coated Au2S Nanoshells: Insight into Multicomponent Nanoparticle Growth,” Phys. Rev. Lett. 78(22), 4217–4220 (1997). [CrossRef]
  14. J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82(2), 257–259 (2003). [CrossRef]
  15. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007). [CrossRef] [PubMed]
  16. C. Farcau and S. Astilean, “Mapping the SERS efficiency and hot-spots localization on gold film over nanospheres substrates,” J. Phys. Chem. C 114(27), 11717–11722 (2010). [CrossRef]
  17. W. Mu, D.-K. Hwang, R. P. H. Chang, M. Sukharev, D. B. Tice, and J. B. Ketterson, “Surface-enhanced Raman scattering from silver-coated opals,” J. Chem. Phys. 134(12), 124312 (2011). [CrossRef] [PubMed]
  18. L. Baia, M. Baia, J. Popp, and S. Astilean, “Gold films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR,” J. Phys. Chem. B 110(47), 23982–23986 (2006). [CrossRef] [PubMed]
  19. M. Litorja, C. L. Haynes, A. J. Haes, T. R. Jensen, and R. P. Van Duyne, “Surface-Enhanced Raman Scattering Detected Temperature Programmed Desorption: Optical Properties, Nanostructure, and Stability of Silver Film over SiO2 Nanosphere Surfaces,” J. Phys. Chem. B 105(29), 6907–6915 (2001). [CrossRef]
  20. H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995). [CrossRef] [PubMed]
  21. S. Ono, M. Saito, M. Ishiguro, and H. Asoh, “Controlling factor of self-ordering of anodic porous alumina,” J. Electrochem. Soc. 151(8), B473–B478 (2004). [CrossRef]
  22. W. Lee, R. Ji, U. Gösele, and K. Nielsch, “Fast fabrication of long-range ordered porous alumina membranes by hard anodization,” Nat. Mater. 5(9), 741–747 (2006). [CrossRef] [PubMed]
  23. P. Krohne-Nielsen, O. Albrektsen, S. Hassing, and P. Morgen, “Controlling interparticle gaps in self-organizing gold nanoparticles on templates made by a modified hard anodization technique,” J. Phys. Chem. C 114(8), 3459–3465 (2010). [CrossRef]
  24. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008). [CrossRef] [PubMed]
  25. M. Hegner, P. Wagner, and G. Semenza, “Ultralarge atomically flat template-stripped Au surfaces for scanning probe microscopy,” Surf. Sci. 291(1-2), 39–46 (1993). [CrossRef]
  26. P. Nielsen, P. Morgen, A. C. Simonsen, and O. Albrektsen, “Hemispherical shell nanostructures from metal-stripped embossed alumina on aluminum templates,” J. Phys. Chem. C 115(13), 5552–5560 (2011). [CrossRef]
  27. P. Nielsen, S. M. Novikov, P. Morgen, S. I. Bozhevolnyi, and O. Albrektsen, “Surface-enhanced Raman microscopy of hemispherical shells stripped from templates of anodized aluminum,” J. Raman Spectrosc. (to be published), doi:. [CrossRef]
  28. A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett. 22(5), 185–187 (1969). [CrossRef]
  29. G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986). [CrossRef] [PubMed]
  30. J. Beermann, S. M. Novikov, T. Søndergaard, A. E. Boltasseva, and S. I. Bozhevolnyi, “Two-photon mapping of localized field enhancements in thin nanostrip antennas,” Opt. Express 16(22), 17302–17309 (2008). [CrossRef] [PubMed]
  31. A. Hohenau, J. R. Krenn, S. G. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75(8), 085104 (2007). [CrossRef]
  32. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  33. E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in Surface Enhanced Raman Spectroscopy,” Chem. Phys. Lett. 423(1-3), 63–66 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited